Securing Smart Grid Infrastructure against Emerging Cyber Threats

Daisuke Mashima

Illinois at Singapore Pte Ltd Advanced Digital Sciences Center

April 16, 2019

at

National University of Singapore

Brief Bio

Daisuke MASHIMA

Experience

Senior Research Scientist at ADSC and Research Affiliate at

University of Illinois at Urbana Champaign

2 government-funded smart grid security projects

Formerly research scientist at Fujitsu Laboratories of America

- Smart energy and smart home IoT systems
- Security and privacy in smart metering
- OpenADR2.0 standardization

Education

PhD in Computer Science from Georgia Tech in 2012

Security and privacy in Electronic Healthcare Records

Award

- Best paper award from IEEE SmartGridComm 2014
- Silver Prize in App Contest at ACM MobiCom 2015
- President Awards and Standardization Promotion Award from Fujitsu

Advanced Digital Sciences Center

ADSC is a research center of Illinois at Singapore Pte. Ltd., an affiliate of the University of Illinois / supported by NRF's CREATE programme.

ADSC's research is led by faculty from Electrical & Computer Engineering and Computer Science

We have diverse staff of **20** full-time researchers—more than half with PhDs

We have **11** Illinois professors involved in SG

The TSCP CREATE Programme

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SUNGAPORE

Research . Innovation . Enterprise

The Challenge

Assurance that a system is both

trustworthy (meaning it is trusted to behave as expected, even during an accidental or intentional disruption) **and** *secure* (meaning it is hardened against malicious attacks)

CREATE Centre for a Trusted and Secure Cyber Plexus (TSCP)

Trustworthy System

Architecture

Verification

Standards, Validation, Tech

Monitoring, Analysis, Interdiction and

Recovery

> SUTD is Illinois' primary partner

Outline

Cyber Threats in Smart Grid Infrastructure

Measures for Securing Smart Grid Systems

Defending against Malicious Command Injection

Countering Data Falsification Attacks in AMI

- Anomaly Detection in Smart Meter Data
- Evaluation Framework for Anomaly Detectors

Ongoing Projects & Concluding Remark

What is Smart Grid?

Power grid enhanced with ICT (information and communication technologies)

- Reliability
- Efficiency
- Security
- Safety

https://alittlefridaystory.com/2016/01/22/solar-power-a-new-hope/

Modernized substations & Smart metering (AMI)

Modernization of Electrical Substations

- Crucial component of power grid system for delivery of electricity (e.g., voltage transformation)
- > Over 10,000 substations in Singapore
- Remotely managed or controlled for load/power shedding, voltage regulation, and topology control

https://en.wikipedia.org/wiki/Electrical_substation

Modernization of Electrical Substations

Adoption of standard technologies such as IEC 60870-5-104 (or IEC104) or DNP3 and IEC 61850 for remote control and automation

IEC 61850-90-2 TR: Communication networks and systems for power utility automation – Part 90-2: Using IEC 61850 for the communication between substations and control centres - Page 10

Protocols used in EPIC smart grid testbed

Ahnaf Siddiqi, Nils Ole Tippenhauer, Daisuke Mashima, and Binbin Chen, "On Practical Threat Scenario Testing in an Electric Power ICS Testbed." To appear at the 4th ACM Cyber-Physical System Security Workshop (ACM CPSS 2018) in June, 2018.

Smart Metering

- Real-time electricity usage monitoring
- Enable accurate load forecasting, peak prediction (i.e., Feedback into control loop)

Security by "Air Gap." Myth or Truth?

https://www.belden.com/blog/industrial-security/goodbye-airgaps-hello-improved-ics-security

- Isolation from other systems or external network
- Dedicated communication infrastructure
- > All devices were trusted.
- Security was not part of protocol or system design.

Stuxnet Worm

- Targeted nuclear plants in Iran
- Exploited multiple zero-day vulnerabilities on Windows
- Can infect via USB drive
- Successfully compromised PLC connected to centrifuge units

(null-byte.wonderhowto.com)

Ukraine Power Plant Attacks

Caused massive power outage in Ukraine in 2015

(https://www.youtube.com/watch?v=8ThgK1WXUgk)

Ironically demonstrated "ICS Cyber Kill Chain"

VPN & Credential Theft Network & Host Discovery

Malicious Firmware Development

SCADA Hijack (HMI/Client)

Breaker Open Commands

UPS Modification Firmware Upload KillDisk Overwrites

Power Outage(s)

(https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf)

CrashOverride/Industroyer

- Reported in the Ukraine incident in 2016
- Abuses widely-used ICS protocols, including IEC 60870-5-104 and IEC 61850
 - Capable of issuing valid SCADA commands

Aurora Generator Test

- Conducted by Idaho National Lab in 2007
- Demonstrated how a cyber-originated attack can damage physical power grid components.
- Succeeded in exploding a diesel generator in 3 minutes!

https://en.wikipedia.org/wiki/Aurora_Generator_Test

Data Falsification on AMI

(U//FC U

FEDERAL BUREAU OF INVESTIGATION INTELLIGENCE BULLETIN Cyber Intelligence Section

27 May 2010

Inherently vulnerable

Singapore to launch smart meter trial for electricity, water and gas

THE Singapore government is studying a wider deployment of smart meters for electricity, gas and water supply.

The Energy Market Authority (EMA), together with national water agency and grid operator Singapore Power, will be issuing a call for proposals for a smart meter trial, aimed at helping consumers to be more efficient in their power, water and gas consumption, said Minister for Trade and Industry (Industry) S Iswaran on Monday at the Singapore International Energy Week.

Currently, most electricity meters in Singapore are read manually once every two months, together with gas and water meters. The agencies hope to have technical solutions developed for remotely reading all three meters reliably and in a cost-effective manner.

The trial will also include the development of a mobile application to provide consumers with real-time information on their electricity, water and gas consumption.

"This would allow consumers to make informed decisions on their consumption and conservation of utilities," said Mr Iswaran. "The results of the test-bed will help us assess whether and how we can deploy advanced metering solutions nation-wide, in tandem with our plans to have full retail competition in the electricity market by 2018."

d, large-scale

ce of smart

<u>Smart meters</u> expands the

Π1

of energy

ity revenue grid control

Outline

Cyber Security vs CPS/ICS Security

Audiodity

What are the goals of general cyber security?

- ✓ <u>C</u>onfidentiality (E.g., Encryption)
- <u>Integrity</u> (E.g., Digital Signature, MAC)
- <u>A</u>vailability (E.g., Redundancy)
- > C-I-A Triad

- What's important in ICS?
 - Availability first (A-I-C)

Confidentiality

Integrity

Cyber Security vs CPS/ICS Security

- In many cases, resource-constrained
 - Embedded devices (RTUs, PLCs IEDs)
 - Limited network bandwidth
- Stringent latency requirements
 - > In particular, communication within a substation
- Need for assessment of physical impact

IEC 62351 Standards

Define security specifications for smart grid communication protocols

➢ IEC 60870-5-104, IEC 61850, DNP3, etc.

Description	Mechanism			Au	Α	NR	Az
Part 3 - Security for any TCP/IP-based profiles	TLS			1	-	-	-
Part 4 - Security for MMS-based profiles	Transport (T)-Profile TLS	1	1	1	-	-	-
r art 4 - Security for Minis-based promes	Application (A)-Profile - Peer authentication using certificate			1	-	~	-
Part 5 - Security for IEC 60870-5 and derivatives	Serial version - Challenge-response protocol		1	1	-	-	-
such as DNP-3	Networked version TLS with encryption only	1	1	-	-	-	-
Part 6 - Security for IEC 61850 profiles	GOOSE and SV - Digital signature	-	1	1	-	-	-
rat of security for the oroso promes	MMS - TLS and Peer authentication using certificate	1	1	 Image: A set of the set of the	-	~	-
Part 8 - Access control in power systems	Role-Based Access Control (RBAC)			-	-	-	1
Part 9 - Key management for power systems	Certificate-based PKI			End-to-End Security			

OVERVIEW OF THE IEC 62351 STANDARD

C=Confidentiality; I=Integrity; Au=Authentication; A=Availability; NR=Non-repudiation; Az=Authorization

MMS=Manufacturing Messaging Service; GOOSE=Generic Object Oriented Substation Events; SV=Sampled Value

Heng Chuan Tan, Carmen Cheh, Binbin Chen, and Daisuke Mashima, **"Tabulating Cybersecurity Solutions for Substations: Towards Pragmatic Design and Planning."** Under submission.

Intrusion Detection Systems

- Detect malicious/anomalous events in the system
- Network-based IDS is popular in the ICS domain.

Signature-based IDS

Based on "known" attack patterns

Anomaly-based IDS

- Statistics-based
- Machine-learning-based

Physics-based IDS

- Power-system physical laws (e.g., state estimation)
- Ensemble IDS

p.port	== 102						-		
	Time	Source	Destination	Protocol	Length	Info			
499	2934.4668082	185.165.120.1	172.31.20.47	TCP	54	40457 → 102	[SYN] S	Seq=0 Win=17602 Len=	0
500	2934.4668383	172.31.20.47	185.165.120.1	TCP	58	102 → 40457	[SYN, /	ACK] Seq=0 Ack=1 Win	=26883 Len=0 MSS=8961
501	2934.8696289	185.165.120.35	172.31.20.47	TCP	54	52280 → 102	[SYN] S	Seg=0 Win=259 Len=0	
502	2934.8696576	172.31.20.47	No. Time	Source	Destination	Protocol		Length Info	
503	2935.4641479	172.31.20.47	142 351.29839345	4 123.59.78.122	172.31.1.17	TCP		74 55744 → 20000	[SYN] Seq=0 Win=29200 Len=0 M
504	2935.8681077	172.31.20.47	143 351.29845994	7 172.31.1.17	123.59.78.122	TCP		74 20000 → 55744	[SYN, ACK] Seq=0 Ack=1 Win=20
505	2935,9618430	185,165,120,36	144 351.53682422	4 123.59.78.122	172.31.1.17	TCP		66 55744 → 20000	[ACK] Seq=1 Ack=1 Win=29312 U
506	2935-9618745-	172.31.20.47	145 351.54180362	1 123.59.78.122	172.31.1.17	DNP 3.0		1076 from 0 to 100	, len=5, Request Link Status
510	2936 4465638	185 165 120 1	146 351.54183011	1 172.31.1.17	123.59.78.122	TCP		66 20000 → 55744	[ACK] Seq=1 Ack=1011 Win=2892
511	2936 4465921	172 31 20 47	14/ 351.5418/346	2 1/2.31.1.1/	123.59.78.122	TCP		66 20000 → 55/44	[FIN, ACK] Seq=1 ACK=1011 Wir
514	2036 5786500	195 165 120 40	140 351.70009303	5 123 59 78 122	172.31.1.17	TCP		66 55744 + 20000	[ETN ACK] Seg=1011 Ack=2 Win=2955
515	2930.3700390	170 21 20 47	150 351,78294162	8 172.31.1.17	123.59.78.122	TCP		66 20000 → 55744	[ACK] Seg=2 Ack=1012 Win=2892
515	2936.5767010	172.31.20.47							[]
510	2936.9601382	1/2.51.20.4/	Frame 145: 1076 by	es on wire (8608 bit	ts), 1076 bytes ca	otured (8608 b	its) on :	interface 0	
525	2937.2320695	185.165.120.42	D Ethernet II, Src: 0	2:90:15:40:10:00 (0.	2:9e:T5:4d:10:dd), 50 78 133 Dct: 17	UST: 02:90:03	:/d:e/:40	e (02:90:03:/d:e/:4e)	
526	2937.2320925	1/2.31.20.4/	> Transmission Contro	l Protocol, Src Port	t: 55744 Dst Port	20000 Sect	1. Ack: 1	1. Len: 1010	
527	2937.3438967	185.165.120.41	4 Distributed Network	Protocol 3.0		· Loodo, seq.	.,	,	
528	2937.3439210	172.31.20.47	4 Data Link Layer	Len: 5, From: 0, To	o: 0, DIR, PRM, Re	uest Link Stat	tus		
	2937.4441273	172.31.20.47	Start Bytes:	0x0564					
	2937.4641164	172.31.20.47	Length: 5						
		172.31.20.47	4 Control: 0xc9	(DIR, PRM, Request	Link Status)				
		172.31.20.47	1	= Direction: Set					
540	2938.1785063	185.165.120.36	.1	= Primary: Set					
541	2938.1785376	172.31.20.47		= Frame Count Bit: N = Ename Count Valid.	Not set				
544	2938.2321224	172.31.20.47	1001	 Frame Count Value: Control Eurotion C 	oder Request Link	Statur (0)			
545	2938,2968816	185,165,120,1	Destination:	a control runcelon e	oue, Request cink	scacus (s)			
546	2938-2969072-	172.31.20.47	Source: 0	•					
			CRC: 0x4c36	correct]					
			4 Distributed Network	Protocol 3.0					
			4 Data Link Layer,	Len: 5, From: 0, To	o: 1, DIR, PRM, Re	uest Link Stat	tus		
			Start Bytes:	0x0564					
			Length: 5						
			4 Control: 0xcs	(DIR, PRM, Request	Link Status)				
			1 1	= Direction: Set					
			.1	- Frindly, Sec	lot ret				
				= Frame Count Valid:	Not set				
			1001	= Control Function C	ode: Request Link	Status (9)			
			Destination:	1		(-)			
			Source: 0						
			CBC: 0x8ede (correct1					

DoS (SYN-flood) attack against IEC 61850 MMS

Scanning against DNP3

Bump-in-the-wire Solutions

Introduce devices to provide security features in add-on manner
 Network traffic control with firewall and data diode

https://www.tofinosecurity.com/products/Tofino-Firewall-LSM

https://www.stengg.com/en/electronics/companies-affiliates/st-electronics-info-security/digisafe-data-diode-solution/

Enhanced message authentication

Add bump-in-the-wire (BITW) devices that handle cryptographic protocols in a transparent manner

BITW device integrated into EPIC Testbed

Need for Additional Lines of Defense

Outline

SCADA Command Authentication

Deployed at (near) the edge of cyber infrastructure

Reliably mediate incoming remote control commands

A*CMD stands for Active Command Mediation Defense.

Evaluate legitimacy/validity of the commands before execution

Daisuke Mashima, Prageeth Gunathilaka, and Binbin Chen, "An Active Command Mediation Approach for Securing Remote Control Interface of Substations." In Proc. of IEEE SmartGridComm 2016 in November, 2016. Daisuke Mashima, Prageeth Gunathilaka, and Binbin Chen, "Artificial Commanddelaying for Securing Substation Remote Control: Design and Implementation." In press for IEEE Transactions on Smart Grid. Daisuke Mashima, Binbin Chen, Toby Zhou, Ramkumar Rajendran, and Biplab Sikdar, "Securing Substations through Command Authentication Using On-the-fly Simulation of Power System Dynamics." In Proc. of IEEE SmartGridComm 2018. Daisuke Mashima, Ramkumar Rajendran, Toby Zhou, Binbin Chen, and Biplab Sikdar,

Command Authentication Based on Power System Dynamics Simulation

- Steady-state power flow simulation
 - Employed by many state-of-theart schemes
 - Fast to calculate
 - Provides only limited information
- Power system dynamics simulation
 - Transient-state behavior (e.g., frequency change) as well as cascading events

Command Authentication Based on Power System Dynamics Simulation

- Implemented authentication logic
 On-the-fly dynamics simulation
 - Compare simulations with and without the command execution
- Designed experiments based on N-1 contingency scenarios
 - **No false positive** on the 37-bus model
 - Lower false negative rate than the steady-state-based approach
- Takes longer time (e.g., 900ms, including pre-/post-processing time)

Algorithm 1 Command Authentication

Require: $PG \leftarrow$ Latest power grid model and status snapshotRequire: $event_{pre} \leftarrow$ Preceeding events to be jointly simulatedRequire: $cmd_{new} \leftarrow$ Reported control command to be authenticated $Res_0 \leftarrow$ DynSim(PG, $event_{pre}$, null) $Res_{cmd} \leftarrow$ DynSim(PG, $event_{pre}$, cmd_{new})if $isWorse(Res_0, Res_{cmd})$ then
Block execution of cmd_{new} else

Allow execution of cmd_{new} end if

Daisuke Mashima, et al., "Securing Substations through Command Authentication Using On-the-fly Simulation of Power System Dynamics." In Proc. of IEEE SmartGridComm 2018 in October, 2018.

Shortening Simulation Latency

- Shortening simulation duration
- Use simplified model
 - E.g., Thevenin Equivalent Circuit
 - Trade-off between accuracy and latency

POWER SYSTEM DYNAMICS SIMULATION LATENCY WITH VARYING COMPLEXITY OF MODELS

Base Model	Model	Duration	Latency
	Size	[sec]	[ms]
37-bus [22]	37 buses	30	458
	23 buses	30	298
	11 buses	30	151
2000-bus [23]	2,007 buses	30	9,134
	1,132 buses	30	5,041
	447 buses	30	1,684
2000-bus [23]	2,007 buses	10	3,083
	1,132 buses	10	1,645
	447 buses	10	578

Artificial Command-delaying

General Guidelines for Latency

IEEE PES (Power & Energy Society) Guideline

- Communication for line sectionalizing: 5 seconds
- Communication for load shedding: 10 seconds
- Communication for transfer switching: 1 second
- US DoE guideline
- Survey done by academia

Finding Tolerable Delay

Delay tolerance (Dt) of

the power grid

 Find through contingency simulations with different time delay before executing recovery controls Algorithm 1 Finding D^* for Given Power Grid ModelRequire: $PG \leftarrow$ Power grid model and topologyRequire: $SC \leftarrow$ Power grid stability conditionsRequire: $CTG \leftarrow$ List of contigencies in scope $D^* \leftarrow$ Initialize with maximum delay to be consideredfor each C in CTG do $Ctl \leftarrow findRecoveryControl(C, PG, SC)$ $Delay_c \leftarrow findTolerableDelay(C, PG, SC, Ctl)$ $D^* \leftarrow Min(Delay_c, D^*)$ end for

return D^*

Name of Gen.	Gen. MW	# of Loads Shed	Max Latency [s]
JO345 #1	150	5	0.9
JO345 #2	150	5	0.9
LAUF69	150	5	1.0
BLT138	140	3	1.2
BLT69	75.23	2	2.5
ROGER69	38	1	3.0

Experiments based on N-1 generator-loss contingencies on 37-bus model

Optimal Command Delaying

A*CMD-Pi: Prototype Implementation

- Implemented on low-cost, embedded platform
- 2 practical deployment options
- Measured throughputs and resource consumption
 - SoftGrid: Software-based substation testbed

PERFORMANCE MEASUREMENTS

Setup	Sustainable	CPU	Memory	
_	Throughput	Usage	Usage	
	(Commands / sec)	(%)	(%)	
All-in-one	33	36.70	15.40	
BITW w/ RPi	33	26.16	8.60	
BITW w/ PC	65	37.50	8.80	
BITW only	over 87	44.28	16.20	
No A*CMD	33	23.97	13.60	
ZNX 202 [31]	less than 10	-	-	

Outline

Anomaly Detection in Smart Meter Data

Adversary Model

> For electricity theft detection:

Goal of attacker: Minimize Energy Bill: $\min_{\hat{Y}_1, \dots, \hat{Y}_n}$

Goal of Attacker: Not being detected by classifier "C":

$$C(\hat{Y}_1, \dots, \hat{Y}_n) = \text{normal}$$

Electricity Theft Detectors

Various candidates:

- ARMA generalized likelihood ratio test
- Simple average energy consumption
- Non-parametric statistics (CUSUM, EWMA)
- Unsupervised learning (LOF)

$$\bar{\epsilon}^2 > \tau$$
, where $\bar{\epsilon} = \frac{1}{n} \sum_{i=1}^n \epsilon_i$
 $\bar{Y} < \tau$, where $\bar{Y} = \frac{1}{N} \sum_{i=1}^N Y_i$
 $S_i > \tau$, where
 $S_i = MAX(0, S_i, \bar{\tau} + (\mu - Y_i - b))$

Which is better? How good are these? Challenge: Lack of real attack data for evaluation!

Evaluation of Detectors

- Evaluate performance in terms of worst-case loss
 - Define worst-possible attack strategy for each detector

Attack against ARMA-GLR detector

 $ar{\epsilon}^2$ > au, where $ar{\epsilon} = rac{1}{n} \sum_{i=1}^n \epsilon_i$

- 1. Calculate $E = \sqrt{\tau}$ 2. Send $\hat{Y}_i = \mathbb{E}_0[Y_i|\hat{Y}_1, \dots, \hat{Y}_{i-1}] - E$
- Attack against CUSUM detector

Calculate $M = \frac{\tau + Nb}{N}$ send $\hat{Y}_i = \mu - M$

Daisuke Mashima and Alvaro A. Cardenas, "Evaluating Electricity Theft Detectors in Smart Grid Networks." In Proc. of the 15th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2012), Amsterdam, Netherlands, 2012.

Evaluation of Detectors

Experiments with real-world energy consumption data

- 15-minute interval reading
- Collected from 108 residential customers in the US

Table 1. Monetary loss caused by undetected electricity theft (5% false positive rate)

Detector	FP Rate	Average Loss	Revenue Lost
Average	0.0495	0.55	43%
EWMA	0.0470	0.852	68%
CUSUM	0.0491	\$0.775	62%
LOF	0.0524	0.975	77%
ARMA-GLR	0.0423	0.475	38%

Daisuke Mashima and Alvaro A. Cardenas, "Evaluating Electricity Theft Detectors in Smart Grid Networks." In Proc. of the 15th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2012), Amsterdam, Netherlands, 2012.

Performance under Data Contamination

> Undetected attack data would mislead detectors

(a) Distribution of slopes of fitted linear (b) Distribution of determination Models Coefficients of fitted linear models

Outline

Honeypot for Smart Grid Systems

honeypot

/ˈh∧nɪpɒt/ ♠

noun noun: honeypot; plural noun: honeypots; noun: honey-pot; plural noun: honey-pots

 a container for honey. "an earthenware honeypot"

- In cybersecurity domain, honeypot is a dummy system to attract attackers.
 - Should look like a valuable, real system
 - Intentionally exposed to attackers

- Honeypot can be used to:
 - Collect threat intelligence
 - Buy time before actual attacks
 - Detect persistent attackers

High-fidelity Substation Honeypot

- Honeypot system for smart grid / ICS is not mature yet.
 - Lack of physical-system behavior
- Integrate power system simulation for consistent, cyber-physical system view
 - Use system and network virtualization for realism and scalability
 - Implemented on top of SoftGrid (<u>http://www.illinois.adsc.com.sg/softgrid/</u>)
- Funded by Singapore Cybersecurity Consortium for enhancement of realism and functionality (2018-)
 - <u>https://sgcsc.sg/event-2018-09-seedgrant.html</u>

05

Daisuke Mashima, Binbin Chen, Prageeth Gunathilaka, and Edwin Tjiong, **"Towards** a Grid-wide, High-fidelity electrical Substation Honeynet." In Proc. of IEEE SmartGridComm 2017.

Concluding Remarks

Power grid is under cyber attack in reality!

Existing security measures are not enough to counter emerging cyber threats.

Substation honeypot is effective for collecting threat intelligence as well as for countering persistent attackers.

Power grid operators, industry, and academia (CS and EE/ECE experts) should join force. Please feel free to contact us for any interest in collaboration and internship opportunities!

Questions?

https://www.slideshare.net/RobertMLee1/a-child-like-approach-to-grid-cybersecurity

Web: <u>https://adsc.illinois.edu</u> Email: <u>daisuke.m@adsc-create.edu.sg</u>

