
GateKeeper: Operator-centric Trusted App
Management Framework on ARM TrustZone

Balachandar Gowrisankar
National University of Singapore

e0674491@u.nus.edu

Daisuke Mashima, Wenshei Ong, Quanqi Ye, Ertem Esiner
Illinois at Singapore Pte Ltd

{daisuke.m, wenshei.ong, quanqi.ye, e.esiner}@adsc-create.edu.sg

Binbin Chen
Singapore University of Technology and Design

binbin chen@sutd.edu.sg

Zbigniew Kalbarczyk
University of Illinois Urbana-Champaign

kalbarcz@illinois.edu

Abstract—Employing Trusted Execution Environment (TEE)
technology such as ARM TrustZone to deploy sensitive security
modules and credentials for secure, authenticated access is the
go-to solution to address integrity and confidentiality challenges
in untrusted devices. While it has been attracting attention as
an effective building block for secure enterprise IT systems
(e.g., BYOD), these secure operating systems are often not
open-source, and thus system operators and developers have
to largely depend on mobile platform vendors to deploy their
applications in the secure world on TEE. Our solution, called
GateKeeper, addresses the primary obstacle for system operators
to adopt ARM TrustZone TEE to deploy their own, in-house
security systems, by enabling the operators more control and
flexibility on Trusted App (TA) installation and update procedure
without mandating involvement of the mobile platform vendors
at each iteration. In this paper, we first formulate an ecosystem
for enabling such operator-centric TA management, and then
discuss the design of GateKeeper, which is a comprehensive
framework to enable operator-centric TA management on top
of GlobalPlatform specification. We further present a proof-of-
concept implementation using OP-TEE open-source secure OS to
demonstrate the feasibility and practical resource consumption
(less than 1000 lines of code and 500 KBytes on memory).

I. INTRODUCTION

In recent years, mobile devices (smartphones, tablets, etc.)
are getting prevalent in both the personal and professional
contexts. Such devices are often utilized for sensitive tasks,
such as gaining remote access to the office network and
performing critical transactions. Consequently, the number of
attacks targeting such devices, compromising integrity and
confidentiality, also increases. To counter these cybersecurity
threats, CPUs in modern mobile devices support a special
execution environment, called Trusted Execution Environment
(TEE) [1]. GlobalPlatform [2] is the organization that makes
specifications for TEE and related technologies. TEE is an
execution environment isolated from the rest of the CPU
at hardware level. ARM TrustZone [3] is the TEE imple-
mentation on ARM processors, which is widely used for
mobile and IoT devices. The trusted and non-trusted execution
environments correspond to two worlds during execution –
secure world and normal world. The operating systems (OS)
that run in the secure and normal worlds are called secure

OS and rich OS respectively. Correspondingly, an application
(app for short hereafter) that runs in the secure world is
called Trusted App or TA. Unlike the normal world, the secure
world ensures authenticity, integrity, and confidentiality of TAs
against adversaries outside of the secure world [4]. TEE’s
security features, such as secure boot and isolation of worlds,
have attracted surging attentions in both academia and indus-
try. TEE can offer a root of trust for implementing security
features for various contexts. For instance, in enterprise IT
systems, the secure OS can ensure integrity and confidentiality
of security credentials (e.g., an encryption key [5] and other
meta data [6], [7]) and security critical modules for secure
remote access, user/device authentication, and access control.
Therefore, an increasing number of system operators and
software developers are interested in using such technology
to fortify their devices and apps from being compromised.

However, most of the popular secure OSs in the market
(e.g., Trustonic’s Kinibi [8], [9], Samsung’s KNOX [10],
Qualcomm’s QSEE1, and Huawei’s TrustedCore2, just to name
a few) are close source. Thus challenge remains for the end
users in developing, distributing, installing TAs on their own
mobile devices. In other words, because of this reason, system
operators (e.g., a company that wants to utilize TEE for
secure remote access) or third-party developers are not able to
freely (i.e., without involvement of a mobile platform vendor
that controls the secure OS) develop and distribute their TAs
even for their own systems [18]. This has been a significant
obstacle to utilize TEE technologies for securing their in-house
systems. Some open-source secure OSs, such as OP-TEE [19],
and hybrid licensed secure OS, such as Sierra TEE [20], are
expected to address this challenge, but its adoption is limited.
This may further imply that the system operators or third-party
developers are required to disclose the source codes of their
TAs, which may include some corporate confidential logic or
information, to the mobile platform vendors. Therefore, the
current ecosystem requires additional trust assumption on the

1There is no official website for QSEE. It is only known to belong to
Qualcomm from papers [11], [12], slides [13], [14] and blogs [1], [9].

2There is no official website for TrustedCore. It is only known to belong
to Huawei from papers [15]–[17] and blogs [9].



mobile platform vendors (in not misusing or disclosing TA
source codes/binary). More notably, such a requirement poses
a significant inconvenience for a use case of emerging de-
mand, namely bring-your-own-device (BYOD). Owing to the
pandemic, many companies are encouraging their employees
to work from home. Employees may often utilize their own
commercial-off-the-shelf (COTS) devices to work remotely
and access the office network. Because of the high dynamics
of BYOD user base as well as the fact that devices are owned
and utilized for other daily tasks by each end user (e.g., an
employee of the system operator and/or third-party contractor
who has business contract with the system operator), it is
impractical to hand over devices to the mobile platform vendor
for TA maintenance (installation and update).

In this paper, we propose a framework, GateKeeper, to
enable TA maintenance by system operators, without involving
mobile platform vendors for each iteration, after the one-
time setup of the secure OS (i.e., in a system-operator-centric
manner). GateKeeper enables (and also ensures) continuous
installation/update of only TAs that are implemented by au-
thorized developers and are approved by the system operator.
GateKeeper solves flexibility and openness challenges by
means of a “gateway” TA, which is pre-installed with the
secure OS upon the one-time setup by a mobile platform
vendor. Our framework guarantees confidentiality and integrity
of TAs throughout their life cycle against attackers outside of
the secure world. We also implemented a proof-of-concept
on OP-TEE secure OS [19]. We expect such flexibility and
control encourage system operators to adopt TEE technologies
for their in-house systems. Our contributions are:

• We formulated an ecosystem for the system-operator-
centric TA management.

• We designed the GateKeeper framework for ARM Trust-
Zone devices to enable secure installation of authorized
TAs under the operator’s discretion and responsibility.

• We developed the proof-of-concept implementation of
GateKeeper on OP-TEE secure OS to demonstrate the
feasibility as well as to measure overhead.

GateKeeper is designed as an additional security and key
management layer on top of the TA installation mechanism
defined by GlobalPlatform. While our design and prototype
focuses on open-source platform, OP-TEE, our intention is
not to develop a technology only for OP-TEE platform. The
concept we develop in this paper can be applied to other TEE
platforms, and thus we hope that commercial mobile platform
vendors evaluate our proof of concept to consider integration
of GateKeeper into their mobile devices.

The rest of this paper is organized as follows. We introduce
the background knowledge and context related to TEE in
Section II. Then we introduce the design and architecture
of our framework in Section III. The implementation of the
framework is discussed in Section IV. Security analysis and
performance/overhead evaluation are done in Section V and
Section VI respectively, followed by supplementary discus-
sions in Section VII. Related works are discussed in Sec-

tion VIII. Finally, we conclude this paper in Section IX.

II. BACKGROUND AND MOTIVATION

To familiarize the readers with TEE-related technologies,
we first introduce some background knowledge in this section.
We then discuss a challenge that has motivated this work.

A. TEE and Trusted App (TA)

Trusted Execution Environment (TEE) is an isolated ex-
ecution environment that allows the secure OS and TAs to
be stored and executed securely [2]. On the other hand, the
usual execution environment is called the Rich Execution En-
vironment (REE) where the Rich OS and normal applications
run. TrustZone is a concrete TEE implementation by ARM.
When TEE is in operation, the ARM processor will be running
in two separated and isolated worlds, the secure world and
the normal world. The world that is currently running can
be distinguished by the value of the Not Secure Bit (NS bit)
in the Secure Configuration Register (SCR) in co-processor
CP15 [21]. The NS bit is propagated to the memory address
and peripheral devices. Therefore, memory and peripheral
devices can be configured to be shared by both worlds or be
accessible solely by either the secure OS or the Rich OS. In the
usual configuration, the secure OS has higher privilege than
the rich OS and it has access to system resources including
the registers, memory, peripherals, and so on.

The larger the size of the software, the greater is the
possibility that there exist bugs and vulnerabilities in that
software. Thus, to ensure the security of the software running
in the secure world (trusted computing base or TCB), it is
better to keep the size of the software running in the secure
world as small as possible. Therefore, to achieve minimal
TCB size, secure OSs are developed from scratch rather than
reusing the traditional OS kernels and their code base. In ad-
dition, normally, the secure OS does not follow the traditional
Portable Operating System Interface (POSIX) standards and
programming paradigms. GlobalPlatform is responsible for
enforcing the standard APIs for the secure OS. The TAs need
to follow a special set of APIs and a programming paradigm
so that they can be loaded and executed in secure OSes that
follow the GlobalPlatform specification.

Secure OS and TAs run in the secure world. The world
switching is done via secure monitor call (SMC) that can be
raised in both worlds. SMC includes the UUID (Universally
Unique Identifier) of the TA to be invoked. SMC can only
be handled by the SM, which is responsible for the world
switch. Thus, it is critical to ensure the security of its logic
and implementation. TAs in the secure world can store data in
the storage called secure objects. Secure objects are typically
stored in the file system of the normal world, encrypted and
signed using the key managed by the secure OS. Installed TAs
themselves are also stored and protected in a similar manner.

B. Motivation

There are several stages during the secure boot process
where the board loads different firmwares and OS images.



Each stage contains the integrity information for the next stage
and it checks, verifies, and authenticates the integrity of the
firmware or images using the integrity information known to it.
The chain of trust (CoT) is established in this way. However,
it is difficult to update or modify an individual component
in this chain. Since the inception of ARM TrustZone, many
secure OSs, including proprietary ones (e.g., by Samsung and
Huawei) and open-source ones (e.g., OP-TEE [19]), have been
developed. It is also imperative to ensure that the secure OS
only installs and executes the verified and authenticated trusted
apps in the secure world. Otherwise, the security guarantee
provided by the secure OS is not different from the one offered
by rich OS in the normal world. There should be a mechanism
to propagate the CoT to the point of executing the trusted
apps in the secure OS. However, it is also equally important
for the legitimate system operators and software developers
that are appointed by the operators, to conveniently develop
and distribute their TAs and install them on the end-user
devices. Without addressing this challenge, TEE is not readily
beneficial for system operators to adopt for securing their
in-house systems. For instance, when we consider a system
to enable secure BYOD, involvement of a mobile platform
vendor whenever installing and updating TAs on user-owned
device is highly inconvenient.

One solution to address this challenge is to design and
implement a built-in TA that works as a gateway for installing
TAs and updates that are authorised by the system operator.
Such a TA is to be carefully evaluated and installed by a
mobile platform vendor upon setup of the secure OS. This way,
once the gateway TA is securely set up by the platform vendor,
the system operator (e.g., an enterprise IT operator or a critical
infrastructure operator) can conveniently install or update their
own TAs at later times without having the mobile platform
vendor in the loop. In other words, the mobile platform vendor
can let the system operators owe responsibility for the security
of the TAs for operational flexibility. Unfortunately, there is
no established framework to meet such practical demands.
Thus, in this paper, we first define the ecosystem and trust
relationship among the entities. We then discuss design of
the gateway TA, named GateKeeper, and present a proof-of-
concept implementation of it.

III. GATEKEEPER FRAMEWORK

A. Entities in Operator-centric TA Management EcoSystem

We first summarize the relationship and trust models among
the parties involved. As seen in Fig. 1, there are four different
entities, namely: a system operator, a mobile platform vendor,
a software developer, and a mobile device user.

A system operator is an entity that is responsible for the se-
cure operation of its in-house system (e.g., BYOD). Typically,
in both the enterprise IT and critical infrastructure operation
settings, the organization’s IT administration department is
seen as the system operator. An Operator is also responsible
for secure operation of mobile devices owned and utilized by
mobile device users (e.g., employees or third-party contractors
that work for the system operator). In some cases, the system

Fig. 1. Relationship among Involved Parties.

operator may establish a business contract to delegate software
development to a third party software developer. In other
cases, the system operator itself (e.g., a development team in
the same organization) can develop the software. We assume
software developers are legally bound by the contract (e.g.,
NDA) with the system operator and thus are trusted not to
disclose any confidential information, including source codes
and binary of TAs, and other secret data such as cryptographic
keys, with other entities, including mobile platform vendors
and mobile device users.

A mobile platform vendor is an entity responsible for setting
up the TEE and secure OS on ARM TrustZone devices
upon request from the system operator. For instance, in the
case of commercial TEE platforms, such as Samsung KNOX,
Samsung sets up and installs TEE and secure OS on mobile
devices they sell. Such a provider can work with client
organizations (i.e., system operators) to implement and set
up security applications in the secure world according to the
client’s needs. On the other hand, the TEE platform is not
open to the client, which prevents the client from flexibly
installing or updating the applications in the secure world.
In this paper, we assume this closed nature of the TEE
platform remains. Mobile platform vendors are trusted by a
system operator in configuring the secure OS with pre-installed
TAs appropriately. However, they can be honest-but-curious
adversaries. For instance, if the source code of TA is disclosed,
which is the case under the current vendor-centric model, they
may attempt to acquire secret information coded/stored in a
system operator’s TA.

B. Security Goals and Threat Models

In order to maximize flexibility in management by the
system operator under the discussed ecosystem, we propose
the following operator-centric framework, called GateKeeper.

• The system operator can choose a software developer
to implement TAs for their in-house systems (e.g., for
remote access) and also distribute the TAs.

• Mobile device users (employees or third-party contrac-
tors), who want to use the in-house system run by the
system operator, require a one-time setup of TEE and



secure OS by a mobile platform vendor who is delegated
the setup task by the system operator.

• Afterwards, the mobile device user obtains (e.g., down-
loads from a web site) TAs authorized by the system op-
erator and installs/updates them on their devices anytime.

GateKeeper framework must satisfy a set of security prop-
erties. Next, we define our security goals.
Prevention of Unauthorized TA Installation. Since modifi-
cation of modules in the secure world may affect the overall
security guarantee, the GateKeeper system should only allow
installation of authorized TAs into the secure world. Thus,
the primary security goal of GateKeeper is to prevent any
unauthorized TAs from being installed into the secure world.
More specifically, GateKeeper only allows installation of TAs
that are provided by software developer(s) who are approved
by or have contract with the system operator. In addition, it is
necessary to check that only the authorized TA binary, which
is scrutinized and approved by the system operator, should
be installed. Therefore, even if the TA developer becomes
malicious (or is compromised), TA binary that is not approved
by the system operator is not installed.
Protection of Integrity and Confidentiality of TA. The other
challenge is the integrity and confidentiality of TA binary
against attackers outside of the secure world, in transit or at
rest in the normal world. Integrity protection is important to
ensure the first security goal. Confidentiality against any entity
other than the system operator and the software developer is
also vital since TA binary may include sensitive information
(e.g., hardcoded keys and/or corporate secrets). Thus confiden-
tiality of TA binary before installation must be ensured against
attackers on the network or in the normal world. Additionally,
it is also required that the system operator can control who
(and which device) can access the TA code and binary. For
example, mobile platform vendors or mobile devices owned
by revoked users should not be able to access them.

The above goals are to be met under the following threat
models and the trust assumptions discussed in Section III-A.
We assume that TEE and components in the secure world
(secure OS and TAs) are trusted and securely bootstrapped.
While attacks against secure OS (e.g., [22]) may be possible,
it is an orthogonal research problem and thus left outside of
our scope. On the other hand, components in the normal world
or outside of the devices (e.g., entities in the network) are not
trusted, and thus attacks could be mounted there.

C. Framework Design

We now elaborate the details of GateKeeper design and
step-by-step description of procedures for TA installation. The
overview of the framework is shown in Fig. 2. Supplemen-
tary discussions on the design decisions are also found in
Section VII. GateKeeper framework involves GateKeeper TA,
which is split into two TAs (intermediate TA and pseudo TA),
a trusted server run by the system operator, and a software
developer. GateKeeper TA is invoked by the GateKeeper proxy
app in the normal world. The intermediate TA does not have
kernel-level privileges and thus cannot directly execute TA

installation. On the other hand, the pseudo TA with kernel-
level privileges cannot be invoked directly by the proxy
app. Below, we describe the procedures of the GateKeeper
framework, starting with the preparation phase as Step 0,
which consists of 2 tasks.
Step 0 (TEE/GateKeeper TA Setup). The mobile platform
vendor sets up the secure OS as well as GateKeeper TA (both
of the intermediate TA and pseudo TA). The intermediate TA
is configured with the URL of the trusted server along with
its digital certificate. UUID of the pseudo TA is randomly
selected for each device and is reported to the system operator.
As mentioned above, since the normal world modules cannot
access the pseudo TA directly, this pseudo TA’s UUID is not
visible to normal world components as well as device users
and can be known only to the system operator (besides the
mobile platform vendor). Thus, it can be used as a secret,
device ID. In our framework, this device ID is used to identify
and manage GateKeeper-enabled devices at a later stage.
Step 0 (Developer Registration). The software developer
needs to register with the system operator (specifically, to its
trusted server). In a business-to-business relationship, this step
can be done as part of the contract phase. During this registra-
tion process, a symmetric key Kenc and a public/private key
pair (Kpriv and Kpriv

−1) are generated for each developer by
the system operator. The symmetric key Kenc will be used
by the developer to encrypt the TA binary before sending
it for installation. The developer is responsible for securely
storing the private key (Kpriv) that is to be used to sign the
developed TA. After this step, the trusted server run by the
system operator stores the registered developer’s public key to
be used in later steps.
Step 1. The software developer implements the TA according
to the specification and API of the secure OS. The developer
incorporates all the necessary libraries and files by statically
linking them into a standalone executable (a.k.a., .ta file).
Then, the developer encrypts the TA executable using Kenc

and signs it using the private key (Kpriv). The developed TA
is submitted to the system operator for its inspection. After the
TA passes the inspection, the system operator adds the hash
value of the TA executable into the list of approved TAs.
Step 2. The developer disseminates the TA via whatever
possible ways. For example, the developer can disseminate the
TA on a website and allow mobile device users to download
the (encrypted and signed) TA into their devices.
Step 3. After the encrypted and signed TA is placed in the
normal world of the mobile device, the user then invokes the
proxy app that resides in the normal world.
Step 4. After the user has invoked the proxy app to initiate
the installation process, the proxy app loads the encrypted and
signed TA executable into the shared memory for transferring
the data to the secure world. It then invokes a secure monitor
call (SMC) to switch to the secure world.
Step 5. In the secure world, the GateKeeper intermediate TA
communicates with the trusted server using TLS with the
pre-configured public key of the trusted server, for down-
loading/updating the trusted developer/TA information. The



Fig. 2. Overview of GateKeeper

information to be downloaded includes public keys and shared
secret keys of authorized developers as well as the list of hash
values of the approved TAs. The downloaded information can
be stored in the secure world for a limited duration, e.g.,
a few hours, for potential needs of offline installation. The
intermediate TA securely enforces the lifetime of them. When
downloading, the intermediate TA sends the device ID (i.e.,
UUID of the pseudo TA) so that the trusted server rejects
requests from unauthorized/revoked devices or entities (i.e.,
request with unknown or invalid device ID). After download-
ing is done, the intermediate TA proceeds to decryption of the
TA binary using Kenc. The decrypted TA binary is then sent
to Gatekeeper pseudo TA.
Step 6. GateKeeper pseudo TA checks the developer’s sig-
nature by using the developer’s public key. The hash values
of the TA binary is then compared against the list of hash
values of the approved TAs. After successful verification, the
provided TA executable is registered in the secure world. We
should note that, while the TA binary is stored in the normal
world file system, it is encrypted and integrity protected by
the secure OS [23].

The same workflow is used for updating an installed TA.
Each TA has metadata including the unique identifier and
the version number. If a TA binary with the same identifier
comes for installation with a newer version, then the secure
OS performs update of the corresponding TA.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

We implemented the framework on QEMU [24] based emu-
lated environment. We set up QEMU with OP-TEE according
to the official documentation [25]. The QEMU environment is
set to emulate an ARM Cortex-A15 processor with TrustZone
support. The whole framework and secure OS are implemented
using the C programming language. We install Linux (a Busy-
Box image) in the rich OS and install the OP-TEE in the secure
world as the secure OS. The proxy app, which runs on the rich

OS, is implemented in C, and offers minimal functionality
to do the tasks discussed in Step 4 in Section III-C (around
100 lines of code). We note that the normal world can run a
commodity OS, such as Android. In this case, the proxy app
can be implemented as an Android app by using JNI (Java
Native Interface) to call OP-TEE APIs.

Since our implementation utilizes OP-TEE, an open-source
secure OS, let us briefly explain the format of the compiled
TA in OP-TEE. Fig. 3 summarizes the structure of the TA
binary file (.ta file) [26]. We should note that the format is
not standardized in Global Platfrom’s specification and may
differ on each secure OS implementation. The “signed header”
section indicates the algorithms for hashing and signing as
well as sizes of the hash value and signature. It is followed by
“hash” value of the header and the compiled TA code. In the
GateKeeper framework, the signature is made by an authorized
software developer’s private key. Then the entire binary shown
in Fig. 3 is encrypted with the developer’s secret key before
sending the TA out for installation.

Fig. 3. Structure of TA binary (.ta file)

The GateKeeper TAs (the intermediate TA and privileged,
pseudo TA) resides in the secure world and is responsible
for installation of the TA binary passed by the proxy app.
The decryption, signature verification, and hash calculation are
performed by using the cryptographic API provided by OP-
TEE. After the decryption and authentication of the TA binary,
the secure OS TA invokes the OP-TEE API to register TA to
the database managed by the secure OS. Then, the installed
TA is stored in the normal world file system in an encrypted
and signed form by using keys embedded in the secure OS



(REE filesystem TA [23]).
The GateKeeper intermediate TA also communicates via

TLS with the trusted server to fetch or update the authorized
developer keys and the list of hash values of approved TAs.
In general, to ensure that the secure OS is vulnerability-
free, it is necessary to keep the trusted computing base as
small as possible so as to keep it easy to test and identify
any security vulnerability. Therefore, TLS functionality is not
included in the OP-TEE secure OS. To enable the TA in OP-
TEE to communicate securely with a trusted server on the
Internet, we had to statically incorporate a TLS library to
provide secure communication between the trusted server and
the secure world. In our proof-of-concept implementation, we
incorporated WolfSSL [27] as the TLS library because it is
designed and developed to be used in the embedded devices
environment. Using WolfSSL APIs, the GateKeeper interme-
diate TA can establish secure, authenticated communication
channel to the operator’s trusted server to download developer
keys and list of approved TAs’ hash values, without being
affected by potential adversaries in the normal world.

V. SECURITY ANALYSIS

This section provides discussions on the effectiveness of
GateKeeper in meeting the security goals (see Section III-B)
under various threat scenarios.
(1) Prevention of Unauthorized TA Installation

One of the primary goals of designing GateKeeper is to
ensure that only applications approved by the system operator
can be installed onto the device. In GateKeeper, this goal is
accomplished by mainly two mechanisms: digital signature
of authorized software developers on TA binary and a list of
hash values of TAs approved by the system operator, which
are securely downloaded from the trusted server run by the
system operator.

As explained in Section IV, the GateKeeper TA checks
the authorized developer’s digital signature on the TA to be
installed. We should note that the public keys are downloaded
upon each invocation of the GateKeeper TA (and cached only
for a limited duration). Thus, revocation of the public keys
can be enforced in timely manner. An entity without the
knowledge of a valid/effective private key cannot pass the
signature verification done in the secure world.

GateKeeper contains a component in the normal world,
namely the proxy app. The proxy app may be compromised or
manipulated by attackers in the normal world to attempt the
installation of unauthorized (or tampered) TAs. However, as
long as the TAs are not accompanied by the valid signature of
the software developer, the TA is not accepted by GateKeeper
TA. The same argument also holds against attackers in transit
between the developer and the device.

In a scenario where multiple developers are authorized to
develop TAs, we also need to prevent a malicious developer
from impersonating other benign developers to install their
malicious TA onto the devices. GateKeeper requires that all
developers pre-register themselves with a system operator,
upon which each developer establishes and shares a unique

public/private key pair. Thus the malicious developer cannot
make a valid signature by impersonating another developer.

While the software developer is trusted in that they don’t
leak keys, it would still be possible that the keys are stolen or
abused to distribute bogus TAs. In such a case, while the bogus
TA can be signed and encrypted appropriately, it is never seen
by the system operator and thus its hash value is not registered
on the trusted server. As the result, it fails in passing the hash
value verification done by the GateKeeper TA.
(2) Protection of Integrity and Confidentiality of TA

Another goal is to protect confidentiality and integrity of
TA binaries. The encryption by using the software developer’s
secret key, TLS secure communication with the trusted server
initiated from the secure world, and functionality of secure OS
together contribute to meet this goal.

For installation, the TA binary needs to be temporarily
stored in the normal world. However, TA binary before in-
stallation is encrypted by using the secret key assigned to
each software developer, and thus an attacker in the normal
world cannot break confidentiality. Integrity is ensured through
the digital signature. Note that both decryption and signature
verification are done after the TA binary is passed to the secure
world. After the installation, the TA binary is typically stored
on the file system of the normal world. However, according to
the specification of OP-TEE, installed TA binary is encrypted
and signed using the keys generated by the secure OS. Thus,
throughout the lifecycle of the installed TA, confidentiality and
integrity are ensured.

Under our framework, the trusted server is (and has to
be) publicly accessible, and thus, unauthorized or malicious
parties may attempt to download the developer’s symmetric
encryption key. This may result in a situation where the
confidentiality of the TA binary is compromised, or the TA is
installed on unauthorized devices (e.g., devices that belong to
former employees). To prevent this, we introduced verification
of the device ID, which is the UUID of pseudo TA installed on
each mobile device as discussed in Section III-C, by the trusted
server. Device IDs are uniquely set when the mobile platform
vendor sets up the secure OS and the GateKeeper TA and is
reported to the system operator for registration on the trusted
server. We should also note that the device ID is not known to
even a legitimate mobile device user. Furthermore, the list of
effective device IDs maintained on the trusted server can be
updated if a mobile device user is revoked (e.g., when he/she
leaves a company). Therefore, in order for a malicious entity to
download the keys, he/she is required to include a valid device
ID. However, it is not feasible, with typical countermeasures
against brute-forcing such as rate limiting, since the space
of the UUID is 128 bits. Additional discussions regarding
device authentication, including an alternative way, is provided
in Section VII. It may be argued that the downloaded keys
remain in the secure world of the device even after revocation.
However, the lifetime of the cached keys and deletion are
enforced by the GateKeeper TA in the secure world.

Speaking of confidentiality, we also need to consider the
mobile platform vendors. Mobile platform vendors are trusted



in that they appropriately set up TEE and secure OS as well
as install GateKeeper TA. Once that is done, mobile platform
vendors are not involved in the TA installation or update
procedure. Thus, they are not aware of the content of the
system operators’ TAs. Thus, any confidential information in
the TAs is not accessible to the mobile platform vendors.
Besides, since the mobile platform vendors can know device
IDs and the address of the trusted server, they could technically
download the encryption keys from the trusted server. If the
platform vendor somehow obtains the encrypted TA binary,
there will be no confidentiality. While this may be considered
as a limitation, we consider this is outside of the honest-but-
curious adversary model we assumed, which typically exploits
information that they legitimately can access.

VI. PERFORMANCE AND OVERHEAD EVALUATION

A. Footprint of GateKeeper

GateKeeper TA, along with OP-TEE secure OS, is part
of the trusted computing base, and thus its correctness and
integrity must be carefully validated. Therefore, its footprint
and size of codes should be manageable to undergo rigorous
testing to eliminate vulnerabilities.

In order to measure the complexity of the module, we
show the lines of code for the intermediate TA and pseudo
TA. Note that the count does not include OP-TEE API and
WolfSSL library. The intermediate TA consists of 767 lines,
and the pseudo TA consists of 193 lines of code. Given this
small footprint, it is tractable to investigate the correctness
thoroughly to make the codes vulnerability-free.

B. Overhead to Implement GateKeeper

In order to facilitate the integration of the GateKeeper
framework into commodity devices, it is crucial that resource
consumption is acceptable. Using the prototype implemen-
tation on QEMU, we measured the memory and storage
overhead required for GateKeeper, which is summarized in
Table I. Among the measurements, since we were not able to
find the size of the pseudo TA executable, we measured the
intermediate object file before generating the executable. Since
the pseudo TA only utilizes APIs provided by OP-TEE, we
assume that the eventual executable size is not significantly
different. Secure objects, in a signed and encrypted form,
are visible in the normal world. Thus we measured the total
size on the normal world file system, after downloading
keys for a single developer and 1 TA’s hash value. If we
consider multiple developers and approved TAs, then the size
is expected to grow linearly, but in the expected use cases, the
number of developers and TAs are usually small. Thus, overall
storage/memory usage is considered practical.

TABLE I
MEMORY AND STORAGE OVERHEAD

Component Size (KByte)
RAM Usage of OP-TEE OS Image 469
GateKeeper Intermediate TA Executable 295
GateKeeper Pseudo TA Object Size 115
Secure Object Size 65

Besides, while GateKeeper is invoked only when TA in-
stallation/update needs to be performed, which is considered
infrequent and does not require real-time’ness, running TAs
in the secure world suspends execution in the normal world
modules. Thus, latency for execution of GateKeeper should
not be too long. As discussed, the installation process of
GateKeeper involves the following tasks:

1) Decrypting TA binary to be installed
2) Downloading from the trusted server (and caching)
3) Verifying digital signature
4) Verifying hash value of TA binary

Among these, 1) and 2) are executed in the intermediate TA,
while 3) and 4) are done in the pseudo TA of GateKeeper.
Using a simple TA, whose encrypted version is of size 72
KBytes, we measured the latency of each step. The measure-
ment is taken 10 times for each step, and the average is shown
in Table II. Our prototype implementation utilized 2048-bit
RSA for signing a TA and AES CBC mode for encryption.
Besides, the keys and hash values downloaded from the trusted
server are stored in the secure storage provided by the secure
OS for offline usage.

TABLE II
AVERAGE TIME TAKEN FOR EACH PHASE OF INSTALLATION

Micro Tasks in Installation Process Average Processing
Time (in seconds)

Download keys and list of hash values from
server using TLS

1.13

Write decryption key to secure storage 0.26
Read decryption key from secure storage 0.01
Write RSA public key (modulus and expo-
nent) to secure storage

1.18

Read RSA public key (modulus and expo-
nent) from secure storage

0.02

Write hash list (with 1 hash value) to secure
storage

0.80

Read hash list (with 1 hash value) from secure
storage

0.02

AES-CBC decryption 0.23
Signature and hash verification by Pseudo TA 1.04

In addition, we took three different TAs of different sizes
and compared the time taken for decryption and installation
by the pseudo TA. The results are summarized in Fig. 4.
The details about the TAs used for the measurement are
summarized in Table III.

TABLE III
TAS USED FOR LATENCY MEASUREMENT

Name Functionality Size (KByte)
Hello World Default TA included in OP-TEE

distribution. Increments counter for
each invocation.

72

Hash Gen Calculates a hash value of a given
password using SHA-256.

92

File Download Downloads a text file from a server
using TLS. (with WolfSSL library)

299

In Fig. 4, we can see that the average time required
for decryption and installation increases with the size of
the TA. However, the difference in the installation time of
’Hello World’ and ’File Download’ is less than 1 second. We



Fig. 4. Latency comparison between TAs of different sizes

also see that the installation latency is roughly linear to the
TA size. This shows that the latency using GateKeeper is low
enough even for applications of a larger size.

VII. DISCUSSION

Device Authentication by Trusted Server: For the trusted
server to authenticate devices, we utilized device ID (UUID
of GateKeeper pseudo TA). An alternative (or additional)
option is to utilize mutual authentication of TLS using a client
certificate and key pair of each device. In this case, a mobile
platform vendor is responsible for issuing a certificate and
private key upon TEE setup and sharing the client certificate
with the system operator. Then the system operator can
configure it on the trusted server for device authentication.
While we do not see any security drawback with this approach,
it is necessary to assume an additional responsibility on the
mobile platform vendor. Yet another approach for the device
authentication would be a per-user password entered via the
proxy app in the normal world. However, this would not
only require password registration on the trusted server but
also require trusted user interface to protect the user-entered
password from a potential adversary in the normal world (e.g.,
a key logger), which is not feasible or not supported on all
platforms.
Encryption of TA: In order to encrypt TA, our design decision
is to assign a single symmetric key to each developer. The
main reason for this decision is to facilitate key management
and distribution of an encrypted TA, allowing the same en-
crypted TA binary to be processed by all devices that belong
to the same system operator. Using different key (either sym-
metric or asymmetric) for each device would cause significant
complexity in distribution of the TA, since a developer needs
to prepare a signed, encrypted TA for each device separately.
Integrity Protection of TA: In our design, we utilized digital
signature for ensuring integrity. This can be replaced with
MAC using the shared secret key for the developer. This
way, we could not only simplify the key management (i.e.,
only one key is used for both encryption and integrity) but
also reduce the computational overhead. However, this design
decision may result in using the same shared secret key for all
devices. (Otherwise, the software developer needs to prepare

TA binary for each device, which increases the workload of
the system developer.) Moreover, this could increase the risk
of key leakage/misuse, similar to a group key setting.
Validation of TA by System Operator: In the proposed
framework, we assume that the system operator can verify the
integrity and correctness of a TA developed by the authorized
developer before adding the hash of the TA to the list of
approved TAs. If the verification is insufficient, it would result
in approving a TA with a security loophole or backdoor. We
admit that such verification is non-trivial. However, this is
an orthogonal problem. Given that the source code is made
available to the operator for checking and compilation, we
assume static and dynamic software analysis can help.

VIII. RELATED WORKS

GateKeeper is designed based on GlobalPlatform [2] and
OP-TEE secure OS [19], [23] specifications, which define
procedure and API to install TAs into the secure world.
However, the defined mechanism is not operator-centric. In
particular, while a TA to be installed can be signed and
optionally encrypted, the keys to be utilized must be embedded
in the secure OS. These keys must be set up by a mobile
platform vendor, and their update requires involvement of the
platform vendor. Therefore, for instance, it does not allow
operators to flexibly select and change authorized software
vendors. GateKeeper does not intend to re-invent the existing
TA installation scheme, but we designed and implemented an
additional management layer for operator-centric control.

GateKeeper is most related to secure OS trusted service
development. In Truz-Droid [28], the authors developed a
trusted app that provides secure services in the secure OS for
the apps in the rich OS to use. The secure service provides
direct interaction between the end user and the secure OS to
ensure that the credentials and the confirmation information
entered by the user is secure even in a situation where the rich
OS or the underlying hypervisor is compromised. They also
incorporate SSL functionality inside the secure OS module
to empower the secure OS to securely communicate with a
remote server. The notable difference between GateKeeper and
Truz-Droid [28] is that GateKeeper provides a framework for
the developers to develop the trusted apps and for the users
(system operators) to choose whether or which trusted app
should be installed onto their mobile devices.

Li et al. [29] proposed a trusted data vault which serves
as a small trusted engine that stores and manages security
sensitive data in an untrusted mobile OS and device. Similar
to Truz-Droid, DroidVault also guarantees that the end user
can securely interact with the trusted vault by leveraging
TrustZone technology. It also enforces the policy of allowing
only the authorized code to access sensitive data. GateKeeper
is different from DroidVault in terms of the motivation and
purpose of the app. We aim to alleviate the difficulty that arises
during development and installation of trusted apps on secure
OS while they aim to provide a secure service for storing and
managing security sensitive data.



Jang et al. [30] presented a solution to enable developers
to utilize TrustZone resources without needing to collaborate
with TrustZone OS vendors and manufacturers. They create
a private execution environment using a memory region that
is isolated from both the rich OS and secure OS. Security
critical applications are then moved from rich OS to the private
execution environment during runtime. The integrity of the
applications is ensured through hash verification before copy-
ing them to the private execution environment. The difference
between our work and PrivateZone lies in the fact that we aim
to provide a framework for TA installation/distribution/update
in an operator-centric manner. In contrast PrivateZone focuses
on developing a prototype for app developers who can make
use of the benefits of TrustZone without involving the OS
vendors.

IX. CONCLUSION

There is an increasing demand to implement robust mobile
device management in various working environments, includ-
ing enterprise IT and critical infrastructure operations. While
trusted execution environment (TEE) is a promising building
block, its closed nature and lack of flexibility for installing and
updating trusted software have limited its broader adoption.
To address this challenge, in this paper we presented a
framework, called GateKeeper, that enables system operators
to choose third-party developers to implement a trusted ap-
plication and then install it onto mobile devices it manages
without involving mobile platform vendors at each iteration.
GateKeeper reduces dependency on mobile platform vendors
and thus provides system operators with more control. We
also developed the proof-of-concept on OP-TEE secure OS
for extensive performance and overhead evaluation.

Some research challenges remain for the GateKeeper
ecosystem to be more effective. For instance, it is necessary for
a system operator to be able to rigorously validate the integrity
(e.g., without any malicious code) and correctness of a trusted
application developed by the third-party developer. Further-
more, it is an interesting future work to extend GateKeeper
framework to allow a single device to be enrolled in multiple
system operators, which is often the case in a BYOD context.
Lastly, we plan to open-source GateKeeper for evaluation by
the TEE user community and mobile platform vendors.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CRE-
ATE) programme.

REFERENCES

[1] J. Guilbon, “Introduction to Trusted Execution Envi-
ronment: ARM’s Trustzone,” https://blog.quarkslab.com/
introduction-to-trusted-execution-environment-arms-trustzone.html,
Jun. 2018, accessed: Feb. 2019.

[2] TEE System Architecture Version 1.2, Nov. 2018.
[3] ARM, “Introducing arm trustzone,” https://developer.arm.com/

technologies/trustzone, accessed: Feb. 2019.

[4] TEE Protection Profile Version 1.2.1, https://www.commoncriteriaportal.
org/files/ppfiles/PP%20TEE%20v1.2.1 20161215.pdf, GlobalPlatform
Device Committee, Nov. 2016, accessed: Feb. 2019.

[5] E. Esiner, D. Mashima, B. Chen, Z. Kalbarczyk, and D. Nicol, “F-pro:
a fast and flexible provenance-aware message authentication scheme for
smart grid,” 10 2019, pp. 1–7.

[6] E. Esiner, U. Tefek, H. S. Erol, D. Mashima, B. Chen, Y.-C. Hu,
Z. Kalbarczyk, and D. M. Nicol, “Lomos: Less-online/more-offline
signatures for extremely time-critical systems,” IEEE Transactions on
Smart Grid, vol. 13, no. 4, pp. 3214–3226, 2022.

[7] U. Tefek, E. Esiner, D. Mashima, B. Chen, and Y.-C. Hu, “Caching-
based multicast message authentication in time-critical industrial control
systems,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1039–1048.

[8] “Trustonic Secured Platforms (TSP), The industry’s most com-
plete device security solution,” https://www.trustonic.com/solutions/
trustonic-secured-platforms-tsp/, accessed: Feb. 2019.

[9] D. Berard, “KINIBI TEE: TRUSTED APPLICATION
EXPLOITATION,” https://www.synacktiv.com/posts/exploit/
kinibi-tee-trusted-application-exploitation.html, accessed: Feb. 2019.

[10] “SAMSUNG Knox,” https://www.samsungknox.com/en, accessed: Feb.
2019.

[11] D. Rosenberg, “Qsee trustzone kernel integer over flow vulnerability,”
in Black Hat conference, 2014, p. 26.

[12] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[13] D. Rosenberg, “Reflections on Trusting Trustzone,” Black Hat USA,
2014.

[14] E. Evenchick, “Rustzone: Writing Trusted Applications in Rust,” Black
Hat Asia, 2018.

[15] EMUI 8.0 Security Technical White Paper, https://consumer-img.
huawei.com/content/dam/huawei-cbg-site/en/mkt/legal/privacy-policy/
EMUI%208.0%20Security%20Technology%20White%20Paper.pdf,
HUAWEI Technologies CO., LTD., Oct. 2017, accessed: Feb. 2019.

[16] D. Shen, “Exploiting trustzone on android,” Black Hat USA, 2015.
[17] A. Grygoriev, “Security issues with ARM TrustZone,” TESTING STAGE,

2018.
[18] Q. Ye, H. C. Tan, D. Mashima, B. Chen, and Z. Kalbarczyk, “Position

paper: On using trusted execution environment to secure cots devices
for accessing industrial control systems,” 2021.

[19] “Open Portable Trusted Execution Environment,” https://www.op-tee.
org/, accessed: Feb. 2019.

[20] “SierraTEE for ARM®Trustzone®and MIPS,” https://www.sierraware.
com/open-source-ARM-TrustZone.html, accessed: Feb. 2019.

[21] “ARM1176JZ-S Technical Reference Manual,” http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Chdfjdgi.html,
accessed: Mar. 2019.

[22] R. Stajnrod, R. Ben Yehuda, and N. J. Zaidenberg, “Attacking trustzone
on devices lacking memory protection,” Journal of Computer Virology
and Hacking Techniques, pp. 1–11, 2021.

[23] “Op-tee documentation,” https://optee.readthedocs.io/en/latest/index.
html, accessed: Aug. 2022.

[24] “QEMU the FAST! processor emulator,” https://www.qemu.org/, ac-
cessed: Apr. 2019.

[25] “Qemu v7,” https://optee.readthedocs.io/en/latest/building/devices/qemu.
html, accessed: Feb. 2019.

[26] “REE-FS TA binary formats,” https://optee.readthedocs.io/en/
latest/architecture/trusted applications.html#ree-fs-ta-binary-formats,
accessed: Feb. 2019.

[27] “Emedded TLS Library,” https://www.wolfssl.com/, accessed: Apr.
2019.

[28] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system,” in
Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2018, pp. 14–27.

[29] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena, “Droidvault:
A trusted data vault for android devices,” in 2014 19th International
Conference on Engineering of Complex Computer Systems. IEEE, 2014,
pp. 29–38.

[30] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang,
“Privatezone: Providing a private execution environment using arm
trustzone,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 5, pp. 797–810, 2018.


