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Abstract—Electrical substations in power grid act as the
critical interface points for the transmission and distribution net-
works. Over the years, digital technology has been integrated into
the substations for remote control and automation. As a result,
substations are more prone to cyber attacks and exposed to digital
vulnerabilities. One of the notable cyber attack vectors is the
malicious command injection, which can lead to shutting down of
substations and subsequently power outages as demonstrated in
Ukraine Power Plant Attack in 2015. Prevailing measures based
on cyber rules (e.g., firewalls and intrusion detection systems)
are often inadequate to detect advanced and stealthy attacks
that use legitimate-looking measurements or control messages to
cause physical damage. Additionally, defenses that use physics-
based approaches (e.g., power flow simulation, state estimation,
etc.) to detect malicious commands suffer from high latency.
Machine learning serves as a potential solution in detecting
command injection attacks with high accuracy and low latency.
However, sufficient datasets are not readily available to train and
evaluate the machine learning models. In this paper, focusing on
this particular challenge, we discuss various approaches for the
generation of synthetic data that can be used to train the machine
learning models. Further, we evaluate the models trained with
the synthetic data against attack datasets that simulates malicious
commands injections with different levels of sophistication. Our
findings show that synthetic data generated with some level
of power grid domain knowledge helps train robust machine
learning models against different types of attacks.

I. INTRODUCTION

Smart grids are equipped with information and communi-
cation technology for remote monitoring and control of power
grid devices. The smart grid consists of two layers, cyber and
physical systems [1]. In the cyber layer, a vast amount of
intelligent devices form a cyber network to monitor, control
and protect the physical systems. By switching from traditional
electric grid to smart grid, there are benefits to be reaped
including but not limited to more efficient power transmission,
reduced management costs and consumer prices, and improved
integration with other power systems such as renewable energy
systems [1]. This innovation is becoming increasingly popular
among companies and governments worldwide and locally in
Singapore, with Jurong Town Corporation developing one such
grid for the Punggol Digital District [2].

* Authors were with Illinois at Singapore Pte Ltd when the work was done.

The substation is a critical entity in the smart grid and it
primarily consists of transformers, circuit breakers, and switch
gears. Substations enable the transformation of electricity
from generators through different voltage levels for efficient
delivery to the end consumers. [3]. Intelligent electronic
devices (IED) are installed in substations, and these digital
devices form a communication network to facilitate remote
control, to automate fault responses, and to optimize power
grid operations. The IEDs record measurements and the state
of the substations, and enable the remote control of substations
through remote commands such as those for switching on/off
of circuit breakers issued by a control center.

With such digitalization, there is an increased risk of cyber
attacks that could subvert power grid services. Any malicious
intrusion in the communication channel may jeopardise a
part or whole of the power gird, for instance by means of
injection of malicious control commands. Such an attack can
be initiated in various ways such as through the network or
from the control center. The integrity of the network between
the control center and substations can be compromised through
man-in-the-middle (MITM) attack or replay attacks if there are
insufficient security implementations [4]. An attack initiated
through the control center can be achieved through many
ways, from having a malicious employee in the control center
performing hostile actions to the installation of rootkits to gain
access to the system through privilege escalation. One such
real-world cyber attack experienced is in the Ukraine Power
Plant Attack in 2015, where the attackers exploited the remote
control interface and manipulated a large number of circuit
breakers to be opened. As the result, around 30 substations
went offline for hours, causing a massive blackout [5].

There are existing defense and mitigation techniques to pre-
vent command injection attacks, mainly using physics-based
or rule-based approaches. Physics-based methods calculate,
based on the power system physical laws, the estimated values
of the new state to see if the incoming command were to
be executed, and then determine if the system violates any
stability constraint (e.g. power flow limit in transmission lines,
low/high bus voltage, etc.). This can be achieved through on-
the-fly power flow simulation [6]. However, such physics-
based methods often suffer from high latency [6] and may
perform poorly with incomplete data (e.g., missing measure-
ments, which often happen in a real-world operation). On978-1-6654-3254-2/22/$31.00 ©2022 IEEE



the other hand, rule-based approaches consist of firewalls and
intrusion detection systems (IDS). They work on a specific
set of cyber rules to allow legitimate traffic inside a network.
By monitoring and analyzing the network traffic in real-time,
IDS and firewalls identify and block an event that does not
satisfy the security policy of the system. However, the major
drawback of the rule-based techniques is that they may fail to
counter attacks that follow the normal communication model,
thus unable to counter cases like the Ukraine incident where
a legitimate control center machine sends out malicious com-
mands. Message authentication and cryptographic protection
(e.g., [7], [8]) would also fail if an authorised user mistakenly
(or perhaps intentionally) issues a harmful command to the
system or if a legitimate device is compromised.

With the limitations of physics-based and rule-based ap-
proaches mentioned above, the use of machine learning (ML)
provides a potential solution due to its promising computa-
tional and reasoning capabilities. However, in order to imple-
ment the ML models effectively, we need substantial datasets
to train and test the models. As there is limited coverage
of ML in the field of command authentication, this leads to
insufficient real-world command injection attack data to train
the ML models. Furthermore, since power grid operators are
often not willing to disclose data, even normal data is not made
available to the research community. In this paper we explore
the use of power flow simulator to synthetically generate
training and test datasets for the ML models. We consider
different ways of generating such datasets, with different levels
of domain knowledge utilized, and then train several ML
models. We then create multiple datasets of simulated attacks
to evaluate the effectiveness of each training dataset. Through
experiments, we also demonstrate the low latency for attack
detection. It is important to note that the main emphasis of
this paper is on the generation and evaluation of synthetic
datasets for ML models’ training and testing and not on the
development or fine-tuning of ML models. We summarize the
following contributions of our work:

• First, we discuss the use of open-source power flow
simulator (namely Pandapower [9]) to create synthetic
datasets, which are customized with different levels of
power system domain knowledge, for a 3-substation
model for the command authentication case study.

• Second, we generate synthetic attack datasets that as-
sumes different level of sophistication of attackers, using
a power flow simulator.

• Third, we train various supervised machine learning
models on the generated training datasets for detection
of malicious commands. The performance and latency of
the models are evaluated against the attack datasets.

This paper is organized as follows. In Section II, we discuss the
related work. Section III provides an overview of the system
and threat models we assume. Section IV presents the test
network and the details of synthetic training/attack dataset
generation. Section V discusses the different ML models
implemented and the test datasets used to evaluate the ML

models. Section VI evaluates the effectiveness of the ML
models. Finally, we conclude the paper with future research
directions in Section VII.

II. RELATED WORK

With no proper command authentication, an adversary can
effectively violate the availability of the system by opening
circuit breakers and remotely switching substations off, result-
ing in power outage as shown in the infamous Ukraine power
grid attack in 2015 [5]. Additionally, the aurora vulnerability
showed that cyberattack through malicious commands can
destroy physical components of the electric grid [10]. The
research work on the defense against malicious command
injection attacks tries to differentiate between legitimate and il-
legitimate control commands. A cyber-based IDS monitors and
analyzes the network traffic in real time, identifying/blocking
events that does not satisfy the security policy. The cyber-
based IDSes such as signature-based, are common in detecting
attacks in various cyber-physical systems including smart
grids [11]. However, such cyber-based approaches do not take
account of up-to-date power grid state information for context-
aware attack detection.

Physics-based methods for analysis and security of power
grid have also been widely adopted in the past. Mashima
et al. [12] provided a framework called active command
mediation defense (ACMD). ACMD is deployed in substations
for securing remote control interface. This mechanism offer
an addition layer of defense against attacks that bypass other
cyber security measures. Meliopoulos et al. [13] implemented
a physics-based approach for command authentication using
distributed dynamic state estimation that enabled faster than
real time simulation. Zeng et al. [14] proposed a physics-
constrained vulnerability assessment methodological frame-
work to detect stealthy false data injection (FDI) attack.
They also proposed a physics-constrained robustness verifica-
tion [15] that evaluates the vulnerability of intelligent stability
assessment (ISA) for power systems and provide suggestions
to select the ML models. Remotely issued control commands
were authenticated by incorporating a delay [16] and using
the latency to simulate the power system dynamics [17]. Use
of power system dynamics simulation for malicious command
detection is studied in [6]. While the accuracy is promising, the
simulation takes long time (e.g., around 1 second for relatively
small systems), which has motivated our work.

The application of ML in IDS are done in several contexts,
e.g., in IoT based systems [18], for SCADA systems [19], and
even for smart cities and related infrastructure [20]. However,
most of these works focused on False Data Injection (FDI)
and not malicious command injection. Esmalifalak et al. [21]
attempted to detect stealthy FDI attacks using a support vector
machine (SVM) based technique and a statistical anomaly
detection approach. They showed that SVM outperformed
statistical approach when the model was trained with sufficient
data. He et al. [22] proposed a conditional deep belief net-
work (CDBN) based detection scheme that extracted temporal



features from distributed sensor measures. The proposed de-
tection scheme is robust against various attack measurements
and environmental noise. Karimipour et al. [23] proposed a
computationally efficient and independent mechanism using
feature extraction scheme and time series partitioning to detect
FDI attacks.

To implement ML models, we need to have substantial
datasets to train and test our models. These datasets can be
derived from real-world datasets or created synthetically. The
data can be synthetically generated using rule-based or ML-
based approaches. Paul et al. [24] used load ranking and K-
means clustering algorithms as two different approaches to at-
tack smart grid for selecting the most vulnerable transmission
lines to create contingencies. Ni et al. [25] proposed another
reinforcement learning based sequential line switching attack
to initiate blackout.

In general, the ML-based approach can provide more ef-
ficient detection compared to rule-based/physics-based ap-
proach. The requirements of accurate and fast detection of
cyberattacks in electrical substations motivated us to imple-
ment robust ML models that are trained/tested using synthetic
datasets which have been created emulating real-world threats.

III. THREAT AND SYSTEM MODELS

Whilst smart grid systems can be protected in multiple
layers, we focus on the mitigation of cyber attacks in mod-
ernized substations. More specifically, this paper focuses on
malicious command injection attacks that abuse the remote
control interface in substations. The consequence of such an
attack is experienced in the Ukraine Power Plant Attack [5],
[26]. Engineering PC is another potential entry point for the
attacker. The engineering PC is connected to industrial control
system devices like IEDs and PLCs, on which the attacker
can install a malware, similar to what has been done with in
the Stuxnet attack [27]. IEDs supply chain vulnerability can
also be exploited to install malware. Once gained foothold
inside the substation, the attacker can use the compromised
device(s) to inject malicious commands or measurement data.
Malicious commands could also come from the compromised
control center (or man-in-the-middle attack).

In the context of this work, we assume an intrusion detection
system (IDS) deployed in a field substation to monitor network
traffic and detect suspicious activities, such as malicious
command injection. Such an IDS can be connected to a
mirror port of switch for passively (i.e., in a non-intrusive
manner) monitoring network traffic conveying power grid
measurements as well as control commands (e.g., open/close
of circuit breakers for protection) sent by a SCADA HMI,
protection relays, and PLCs.

Inside the intrusion detection system, physics-based detec-
tion, e.g., one proposed in [6], is implemented. The ML-based
attack detection module can be additionally deployed in front
of it to “pre-filter” the incoming command packets to minimize
the invocation of the computationally heavy physics-based de-
tection so that overall latency can be reduced. The conceptual
module architecture of the intrusion detection system is shown

in Fig 1. We assume that the IDS can passively collects both
command packets as well as measurement packets transmitted
in the substation network. The measurements at each time
slot are collectively used as a feature vector for the both
of machine learning based and physics/rule-based detection
modules, along with the incoming control command to be
evaluated.

Fig. 1. Conceptual IDS model using ML as first layer of defense.

IV. SYNTHETIC TRAINING DATASETS

A. 3-substation Test Network for Care Study

We consider a 3-substation network model for our study
purpose, and the same is shown in Fig. 2. The model is
typical of an industrial customer where multiple substations
are interconnected with redundant feeders. The grid feeds
power to substation S/S-1 which connects substations S/S-2
and S/S-3 with redundant feeders (lines). Each substation has
two transformers to step down the voltage to the utility level.
Every single feeder is equipped with at least one IED for
controlling and monitoring tasks. There is a total of 32 IEDs
in all these substations. The IED interconnection and more
details related to the single line diagram of single substation
can be found in [28]. As the substations are located nearby,
a single intrusion detection device would be able to monitor
the network traffic and flag for any anomaly.

B. Dataset Features

In this network there are 34 switches or circuit breakers (de-
noted by CB-x), 6 transformers (denoted by Tx), 18 active and
reactive loads (denoted by Lines Lx) and 2 grid connections
(denoted by Feeder x). There are a total of 78 features (i.e.,
34 + 6 + 18× 2 + 2). A violation of certain conditions in the
test network will be considered as an anomalous datapoint in
our dataset. There are different types of violations, viz., invalid
grid configuration, lines/transformer overload, bus over/under
voltage, and number of open switches. All the datasets are
generated using Pandapower simulator [9].

C. Generating Training Datasets

Training datasets consist of a set of power flow measure-
ments of the power grid model of interest, as well as device
status (namely circuit breaker open/close). In other words, we
assume that the intrusion detection system collects up-to-date
power grid measurements and circuit breaker status by over-
hearing the SCADA communication. When the IDS observes a



Fig. 2. One-line diagram of the test network with 3 substations.

packet carrying a control command, the corresponding device
status (only circuit breaker status in the scope of this paper) is
overwritten accordingly to evaluate the command is reasonable
given the current power grid status.

We utilize a power flow simulator, namely Pandapower
for this study, to generate training datasets. The input power
system topology (i.e., feeder and circuit breaker status) and
output of power flow simulation together serve as a datapoint.
At the high-level, we generate a large-enough set of different
power system topology and load profile settings and then run
power flow simulation for each. Then, if we observe any
violation of stability conditions (e.g., over/under-voltage and
over/under-current) in the simulation result, the datapoint is la-
beled “positive”. When preparing the input system typologies,
we incorporate different levels of domain knowledge.

One primitive way to generate the set of input configurations
(a set of circuit breaker status) is to randomly pick open/close
status for each circuit breaker in the model. Besides, we add
variations in the load profile. While this is feasible to generate
large datapoints, this training data didn’t perform well based
on our preliminary study. Nonetheless, this dataset (called
Random dataset) is used as a basis of comparison for the
performance of other training datasets. In the rest of this
section, we discuss multiple practical strategies to construct
training datasets.

1) Minimally-constrained Random (MR) Dataset: In
Minimally-constrained Random dataset, we enforce that at

least 1 incoming feeder/transformer is online and always
connected in each substation. This is based on assumption
that a situation where all of these are disconnected is highly
unusual and should be immediately flagged anomalous. Hence,
the datapoints in this dataset adhere to valid grid configurations
and do not violate this constraint. Circuit breakers connected
to the loads are then toggled on/off randomly. This may result
in the some of the datapoints violating the stability condi-
tions (e.g., over/under-voltage and over/under-current) in the
simulation result, leading to a ”positive” result. In short, this
dataset utilizes minimal domain knowledge to narrow down
the space for randomly generating power grid configurations
used as input.

2) Incrementally-tweaked (IT) Dataset: As the substa-
tions are in a continuous and dynamic environment, the
switches/loads and overall state of the substation may change
over time. To incorporate such changes, we first generate
a valid starting point (i.e., without any violation) for any
grid configuration before applying “tweaks” to modify the
the power grid topology. Tweaks are possible ways to make
the grid incrementally approach states that violate power grid
stability conditions, e.g., by connecting a load, disconnecting a
feeder, and disconnecting a generator. We apply one tweak at
a time, and the resultant modification of the grid constitutes a
new datapoint. The process is repeated till we reach a violation
or we run out of options to tweak. Hence, the Incrementally-
tweaked dataset in the end consists of sets of datapoints, where
each set will start with a valid starting datapoint followed by
the datapoints with tweaks sequentially applied.

3) Enumerated Normal (EN) Dataset: The Enumerated
Normal dataset is an improved variant of the Incrementally-
tweaked dataset. It provides a wider coverage of different
grid permutations as well as load profiles. Instead of having
any random valid configuration as a starting point for each
set, we enumerate all possible valid configurations. This step
requires more domain knowledge than than Incrementally-
tweaked dataset, and in the context of the 3-substation model
used for our case study, it can be done as follows. In each
substation, among incoming lines and bus coupler switches,
we need at least 2 of these switches to be closed for any
valid configuration. For example, to ensure a valid grid con-
figuration, we need CB-3 and either CB-0 or CB-4 to be
closed. We get a total of 4,096 valid configurations ((4 possible
permutations of 2 out of 3 switches closed) ∧ (6 combinations
of incoming lines/transformers and bus coupler)). For each
4,096 valid configurations, we generate multiple different load
profiles for the configuration as our starting point, before
applying the ”tweaks” sequentially (same as Incrementally-
tweaked (IT) dataset) to generate the remaining datapoints.

4) Enumerated Normal With Random Toggle (ENRT)
Dataset: Lastly, the Enumerated Normal with Random Toggle
(ENRT) dataset has a slight modification to the Enumerated
Normal dataset. ENRT adds an additional step after the gener-
ation of Enumerated Normal dataset. After applying a tweak,
we randomly toggle any circuit breaker status. This ensures
that the dataset contains some invalid configuration for the



machine learning models to learn.

V. GENERATING TEST/ATTACK DATASETS

Test datasets primarily consist of datapoints that violate the
power grid conditions and each datapoint provides a realistic
state of the network that has potentially been modified by a
malicious command injection. We explore the Unconstrained,
Special, and Attack datasets.

1) Unconstrained: The motivation for the Unconstrained
dataset is simple: randomly switching on and off any switches,
transformers and feeders to simulate a grid configuration
for test data. This simulates the behaviour of an attacker
maliciously disrupting the grid by toggling on/off random
switches to cause disruption.

2) Sequential: The Sequential dataset is generated in a
way similar to MR dataset (see Section IV) in that there
is always a connection between at least 1 feeder and all
non-load buses. The datapoints are generated as sets, each
of which is consisting of 1 valid starting datapoint where
the substations are operating safely, followed by anomalous
datapoints where they violate power flow constraints. These
anomalous datapoints are created by applying tweaks similar
to IT dataset. This dataset simulates a smarter attacker causing
a violation in the grid by sequentially toggling on/off circuit
breakers, transformers or feeder lines one by one.

3) Strategic: The dataset simulates the idea of an attacker
maliciously opening switches such that it causes invalid
grid configuration state. Here we assumes that the attacker
knows the system topology and strategically attacks the circuit
breakers to cut off power supply to certain sections of the
network. In the test network, this occurs when there are
more than 2 switches being opened out of the 3 switches
of incoming lines/transformers and bus coupler. For example,
an invalid configuration and violation occurs when CB-10
and T0 are opened simultaneously. This is because there will
be disconnection and supply disruption to lines L7-L9. The
Strategic dataset generates all possible grid configurations.
At each combination of incoming lines/transformers and bus
coupler, we have 8 possible permutations of the 3 switches
being closed and opened (23 permutations). As we have 6 sets
of these combinations, we will create 86 = 262, 144 possible
unique grid configurations. Out of 86 datapoints, there will be
a total of 86 − 4, 096 (valid grid configurations), i.e., 258,048
invalid grid configuration datapoints.

VI. EVALUATION AND PRELIMINARY RESULTS

A. Accuracy of Models

We evaluate several supervised ML models, namely Logistic
Regression, Decision Tree, Random Forest, Adaptive Boost-
ing (AdaBoost), Extreme Gradient Boosting (XGBoost), and
Artificial Neural Networks (ANN), using open source libraries
such as scikit-learn [29] and TensorFlow [30]. Since our goal
is not on finding optimal ML model, the coverage is not
exhaustive. The ML models are selected from a diverse range
of complexities, with Logistic Regression and Decision Trees
chosen as models with low complexities since these models are

simple and easy to understand. Adaboost, Random Forest and
XGBoost are different ensemble methods whereby multiple
models are created and combined to produce improved results.
The three ML models differs in their ensemble techniques
and are models of mid complexities. Lastly, Artificial Neutral
Network (ANN) is a model of high complexity and it simulates
the behavior of biological systems composed of “neurons”,
comprising of an input node layer, one or more hidden node
layers, and an output node layer. Each ML model is trained
with one of the training datasets discussed in Section IV, and
tested on 3 test datasets discussed in Section V. As such, we
will have a total of 4 training datasets × 6 ML models ×
3 test datasets, i.e., 72 sets of results. However, due to space
constraint, we will discuss only the prominent results achieved
by certain models and datasets.

We test the performance of some selected models on the
generated datasets to evaluate the detection accuracy of mali-
cious command injection attacks. When evaluating the results,
we put more emphasis on false negatives, i.e., whether the
malicious command slips through the ML algorithm detection
scheme. If a malicious command is treated as a normal
datapoint by the ML model, it will be accepted as a valid
command, leading to negative consequences to the power grid.
On the other hand, having false positives will only lead to a
higher latency as the command will be fed into the existing
IDS to be checked again. Hence, false negatives are costlier
than false positives.

TABLE I
RESULTS OF ML MODELS TRAINED WITH ENRT DATASET AND TESTED ON

Sequential DATASET.

Model Accuracy Precision Recall F1 score
Logistic Regression 90.36% 0.9938 0.8768 0.9316
Decision Tree 75.90% 0.9974 0.6803 0.8089
Random Forest 94.14% 0.9986 0.9230 0.9593
AdaBoost 45.66% 1 0.2755 0.4320
XGBoost 97.16% 0.9986 0.9634 0.9807

TABLE II
RESULTS OF ML MODELS TRAINED WITH ENRT DATASET AND TESTED ON

Strategic DATASET.

Model Accuracy Precision Recall F1 score
Logistic Regression 90.37% 0.9953 0.9064 0.9488
Decision Tree 96.41% 1 0.9635 0.9814
Random Forest 98.37% 1 0.9835 0.9916
AdaBoost 94.25% 1 0.9415 0.9699
XGBoost 99.30% 1 0.9929 0.9964

In terms of model performance seen in Table I and Table II,
XGBoost shows the most promising results across training
with 4 different training datasets, with the highest accuracy and
recall consistently. Random Forest also performs consistently
well as compared to the other models. Accuracy of Decision
Tree and AdaBoost varies significantly depending on the test
data. This may be because ENRT training dataset and Strategic
attack dataset were created based on the similar idea, thus
resulting in better accuracy.



TABLE III
MICRO AVERAGE OF RANDOM FOREST MODELS TRAINED WITH

DIFFERENT DATASETS AND TESTED ON AGGREGATED ATTACK DATA

Training Dataset Accuracy Precision Recall F1 score
Random 74.54% 0.9924 0.7263 0.8387
MR 96.46% 0.9858 0.9774 0.9816
IT 96.44% 0.9858 0.9773 0.9815
EN 86.40% 0.9999 0.8694 0.9301
ENRT 98.20% 0.9999 0.9815 0.9906

TABLE IV
MICRO AVERAGE OF XGBOOST MODELS TRAINED USING DIFFERENT

TRAINING DATASETS AND TESTED ON AGGREGATED DATA

Training Dataset Accuracy Precision Recall F1 score
Random 74.53% 0.9920 0.7264 0.8387
MR 98.16% 0.9860 0.9951 0.9906
IT 97.48% 0.9860 0.9879 0.9870
EN 93.18% 0.9999 0.9297 0.9635
ENRT 99.21% 0.9999 0.9919 0.9959

To evaluate accuracy against mixture of attack patterns,
using the aggregated results of all 3 testing datasets, we show
the micro average for Random Forest (Table III) and XGBoost
(Table IV). We can see that ENRT training dataset performed
the best overall in both cases, followed by MR training dataset.

Fig. 3. Comparison of F1 Score

The F1 score is defined as the harmonic mean of precision
and recall, with the highest possible value being 1, indicating
perfect precision and recall. The comparison of F1 score
among different combination of training and testing datasets
are shown in Figure 3. Here, we also included a Random
training dataset that is created by randomly selecting circuit
breaker status without any restriction to act as a benchmark.
When Random training dataset is used, the F1 score when
tested against Sequential attack data is 0, implying that it
failed to detect any positive samples. On the other hand, it
showed comparable accuracy against Strategic and Uncon-
strained attack data. This affected the overall accuracy in the
case of aggregated attack data not only with XGBoost but also
Random Forest (Table III, Table IV). We think it is because
Sequential attack data in nature includes positive examples
with minimal deviation from normal (negative) samples. This

implies that adding some constraints backed by power system
domain knowledge can generate more robust ML models.

TABLE V
RESULTS OF ANN MODEL TRAINED USING ENRT DATASET AND TESTED

ON DIFFERENT TEST DATASETS.

Test Dataset Accuracy Precision Recall F1 score
Unconstrained 99.98% 0.9998 1 0.9999
Strategic 97.99% 1 0.9796 0.9897
Sequential 99.00% 0.9908 0.9699 0.9802

Using TensorFlow, we experimented with ANN. Grid search
is performed to achieve the optimal hyperparameters (i.e.,
number of layers, number of nodes per layer, loss function,
activation function, epochs). Cross-validation is performed to
gauge the performance of the model on unseen data and ensure
that the model does not overfit. Fig. 4 shows the loss, precision,
and recall curves for training and validation. All three graphs
indicate a good fit as the validation curves follow all the
training curves closely with minimal gap and reach a point of
stability. The ANN model shows promising results (Table V)
for all attack datasets.

B. Latency for Malicious Command Detection
Aside from the accuracy of the ML models, the latency of

prediction is evaluated as well, because lower latency is one
of the motivation for using ML-based malicious command
detection over physics-based approaches. The machine used
for testing of the ML models is equipped with Intel Core i7-
8586U (8 Cores), and 16GB RAM. XGBoost is the fastest ML
model, taking only 0.763 microseconds to evaluate a single
datapoint, while ANN takes around 17.5 microseconds. Both
models incurs significantly lower latency than the physics-
based malicious command detection scheme (e.g., [6], which
takes around 1s), making ML-based approaches more suitable
for online, real-time processing.

VII. CONCLUSIONS

In this paper, we conducted a preliminary study on feasibil-
ity and effectiveness of synthetic data generation for using ma-
chine learning technologies for malicious command detection
in smart grid. Specifically we used multiple strategies to gener-
ate synthetic training datasets using an open-source power flow
simulator with different levels of domain knowledge incorpo-
rated. We further developed multiple attack datasets for testing,
each of which assumes different sophistication and strategy of
attackers. Based on the simulation experiments, we showed
that infusing domain knowledge into training data generation
helps us generate more robust ML models against different
kinds of attacks and that ML-based attack detection can be
done significantly faster, without compromising accuracy, than
traditional, physics-based approaches.

A major component of our future work is extensive eval-
uation. Following the same framework, we intend to develop
more test data to increase the test coverage by implementing
more diverse environment and constraints. One possible way is
through the means of human attackers, for instance by having
Capture-the-Flag (CTF) events.



Fig. 4. ANN training validation loss, precision and recall curves
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