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Advanced Metering Infrastructure (AMI) 

�Replacing old mechanical electricity meters 
with new digital meters

�Enables frequent, periodic 2-way 
communication between utilities and homes
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Electricity Consumption Examples
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Electricity Theft under AMI

Attacks will happen, but devices 

are deployed for 20~30 years.

Strategy and tools for attack could 

be easily shared and distributed, 

e.g., through the Internet!



Taxonomy of Detection Mechanisms
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Among software based detection, we focus on 

anomaly detection schemes because they do 

not require actual attack samples, which are 

hard to collect in practice. 



Anomaly Detection Architecture in AMI 
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Our Contribution

�Design anomaly-based electricity theft 
detectors using fine-grained electricity usage 
data reported by smart meters

�Evaluate such electricity theft detectors

�Instead of a traditional approach relying on real 
attack samples, propose new evaluation framework 
that uses “optimal” gain of attackers

• I.e. find the worst-possible attack against each detector, 
and then calculate the cost (kWh stolen without being 
detected) of such an attack 



Adversary Model

Real Consumption Fake Meter Readings Utility

Goal of attacker: Minimize Energy Bill:

Goal of Attacker: Not being detected by classifier “C”:

f(t) a(t)
Compromised 

Smart Meter



� Take average of signal f(t) and report any average lower than 
a threshold as electricity theft

� E.g. Select threshold as “2”

� If daily-average of signal is lower than 2 report an alarm

� Problem

� Attacker, to maximize

its gain, selects

attack signal as

constant a(t)=2

Clearly a(t) looks 

“abnormal”, but it does 

NOT raise an alarm 

because the average of a(t) never went below 2!
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Other Electricity Theft Detectors

�ARMA-GLR Detector

�Use ARMA (Auto-Regressive Moving-Average) 
model to predict future consumption and evaluate 
the prediction error

�EWMA (Exponentially-weighted Moving 
Average) / CUSUM (Cumulative SUM) Chart

�Common techniques to continuously monitor 
process state (i.e Control Chart for QC)

�LOF (Local Outlier Factor)

�Clustering-based approach to identify outlying data 
points



Tradeoff Curves

Y-axis: Cost of Undetected Attacks     (can be extended to other fields)

X-axis: False Positive Rate

• Each detector is trained by using the last 28-day electricity consumption pattern.

• Real AMI data (6 months of 15 minute reading-interval for 108 customers) is used.



Monetary Loss

�Loss per customer

�What if the attack propagates widely??



Effects of “Poisoning” Attacks

� To incorporate changes in 
normal pattern over time 
(Concept Drift), detectors need 
to be re-trained periodically.

� Attacker can use undetected 
attacks to poison training data

“Valid” Electricity Consumption

Undetected Attacks

Time

Re-train Detector to
account for 

Concept Drift



Experimental Results of “Poisoning” Attacks



Detecting Poisoning Attacks

�Identify concept drift trends helping an attacker

�Continuously lower consumption over time. 

�Countermeasure: linear regression of trend

�Slope of regression was not good discriminant

�Determination coefficients worked!
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Ongoing Work

�Use of cross correlation with other customers 
to detect attacks

�Take “shape” of consumption curve into 
consideration?

�Correlation with other factors? (Weather, 
temperature etc.)

�Design and evaluate other detectors

Distribution of cross covariance  with other customers



Ongoing Work

�Detect other types of anomalies

�Apply LOF on consumption pattern of different 
customers on the same day

�Outliers may be caused by a variety or reasons, 
such as meter failure etc.

Typical patterns Outliers



Thank you very much.

Contact:

Daisuke Mashima

dmashima@us.fujitsu.com

Fujitsu Laboratories of America Inc.

1240 E. Arques Ave. M/S 345

Sunnyvale, CA 94085

�Reference:

�“Evaluating Electricity Theft Detectors in Smart Grid 
Networks.” Daisuke Mashima and Alvaro Cardenas. In 
Proceedings of the 15th International Symposium on 
Research in Attacks, Intrusions and Defenses (RAID 2012), 
2012.

�Questions?


