
Implementing Secure Auditing and Accountability for
Electronic Healthcare Record Systems

Daisuke Mashima
Fujitsu Laboratories of America

Sunnyvale, CA
dmashima@us.fujitsu.com

Mustaque Ahamad
Georgia Institute of Technology

Atlanta, GA
mustaq@cc.gatech.edu

ABSTRACT
In the United States, the transition from traditional paper-
based health records to electronic health record (EHR) sys-
tems is being promoted aggressively. While EHR systems
offer a number of benefits, they will introduce new security
and privacy risks. To minimize patient concerns, establish-
ing secure auditing and accountability for EHRs created,
accessed, and shared in / among healthcare organizations,
e.g., hospitals or insurance companies, is essential. In this
paper, we propose a secure E-healthcare system architecture
towards meeting this goal. We also present the prototype
implementation of our system and discuss performance eval-
uation results to demonstrate its practicality.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; H.3.5 [Information Storage and
Retrieval]: Online Information Services—Data Sharing

General Terms
Security

Keywords
EHR, Information Accountability, Data Security, Auditing

1. INTRODUCTION
In the United States, the transition from traditional paper-

based health records to electronic health record (EHR) sys-
tems is being promoted aggressively. The biggest effort by
the government is Medicare and Medicaid EHR Incentive
Programs for“Meaningful Use”of certified EHR technologies
[2][3], which was authorized by Health Information Technol-
ogy for Economic and Clinical Health Act (HITECH) in
2009. As a result, the adoption rate of EHR systems has
rapidly grown. According to the Office of National Coordi-
nator for Health Information Technology (ONC), a total of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

approximately 90,000 professionals and 2,250 hospitals (42%
of all eligible hospitals) participated the incentive program,
as of May, 2012 [6].

EHRs are usually generated and maintained by health-
care organizations, such as hospitals and physician offices,
and could contain, for example, history of a patient’s medical
treatment, prescriptions, doctors’ notes, referrals, records of
immunizations, past lab test results, X-ray pictures, billing
and healthcare beneficiary information, and a patient’s per-
sonal information including age, weight, blood type, mail-
ing address, and other demographic information. By using
EHRs, healthcare providers can retrieve complete healthcare-
related information and medical history of each patient quickly.
Moreover, health information exchange (HIE) is also defined
as one of the core components to facilitate“Meaningful Use,”
so sharing of such health records among doctors, other types
of healthcare providers, and insurers is easily achieved even
across organization boundaries via the Internet.

While the broad adoption of EHR systems could bene-
fit both healthcare professionals and patients, it would also
lead to a variety of security and privacy problems, such as
leakage of sensitive healthcare information and misuse of
such data by criminals for monetary gain. To mitigate these
risks, a number of patient-centric approaches are proposed
to empower patients to be aware of and exercise control
over their health records in a distributed E-healthcare en-
vironment [21][20]. Although such schemes are effective in
terms of enforcement of patient control and consent defined
in HIPAA and HITECH, they require significant changes in
contemporary EHR systems, not only to systems deployed
in healthcare organizations but also on the patient side, and
thereby can not be deployed in a short term.

Therefore, to increase patients’ confidence in EHR sys-
tems, we believe that the necessary next step is to improve
the security of E-healthcare systems used in healthcare orga-
nizations. Because the activities or systems run in health-
care organizations are usually outside of patients’ control,
implementing effective security mechanisms will complement
the patient-centric approaches even after they become widely
available.

To meet the needs of better security for health data, in
this paper we discuss a scheme to establish robust informa-
tion accountability for EHRs and auditing of operations per-
formed on health records in healthcare organizations. The
former aims at enabling a healthcare organization to be
aware of usage and sharing of health records that are cre-
ated by it. This should be possible even after health records
are shared with other healthcare organizations. By doing so,

when a misuse of health records is detected, the healthcare
organization can know who (or which organization) is in-
volved in the health record sharing and thereby can identify
who is responsible for the incident. Such information can
be eventually provided to an affected patient. The latter
property is crucial for governance within a healthcare orga-
nization. Our scheme accomplishes this by robust mediation
by a trusted system component run by a healthcare organi-
zation and also allows the system administrator of the orga-
nization to revoke access privileges of misbehaving system
users or client devices. Moreover, our design incorporates
countermeasures against malware attacks and malicious be-
haviors by insiders as well as external entities, which are
considered as factors that could reduce effectiveness of the
security mechanisms mentioned above.

While many electronic health record systems would imple-
ment some sort of logging systems, recent survey revealed
that most of such systems are not fully functional or compre-
hensive and thereby loophole could exist [17]. In addition,
most auditing mechanisms are only effective within a single
management domain, but considering the fact that sharing
of EHRs are becoming common, such schemes are not suffi-
cient. Thus, auditing capability of healthcare organizations
must be enhanced. Moreover, in such a distributed environ-
ment involving multiple management domains, mandatory
access control systems [28][10][19][34][23] are not realistic ei-
ther. Provenance of electronic data [8][16][24][30] is closely
related to accountability. However, electronic data prove-
nance typically requires a centralized repository to log and
store information that is later used to obtain the derivation
history, which is not often practical in a distributed setting
that involves multiple management domains. Therefore, an
alternative approach needs to be explored.

This paper is organized as follows. In Section 2, we discuss
the high-level idea of our design and system components.
Then, in Section 3, we discuss the concrete implementation
and the way in which EHRs are securely handled in health-
care organizations. The correctness of the design is discussed
in Section 4, followed by the performance evaluation using
the prototype implementation in Section 5. Finally, Section
7 concludes the paper.

2. HIGH-LEVEL SYSTEM DESIGN

2.1 Establishing Information Accountability and
Auditing for Electronic Health Records

In this section, we discuss our approach to establish ro-
bust auditing and information accountability. In this work,
we define information accountability (or simply account-
ability) as the ability of a healthcare organization to keep
track of when and by whom EHRs created and owned by
it are shared and meaningfully consumed, even after health
records are released. By ensuring such accountability, when
misuse of healthcare data, such as insurance fraud [5] [4],
is detected and reported, the healthcare organization can
identify who is involved in the case and is responsible for it.
Moreover, the organization can provide each patient with
information about by whom the copies of her health records
are stored, which is expected to reduce patients’ concern
about the management of their EHRs. To accomplish this
goal, we propose a system design for healthcare organiza-
tions to establish robust auditing, governance, and informa-
tion accountability, using cryptographic primitives as well

as system virtualization technologies.
We start with briefly overviewing the high-level architec-

ture of the underlying cryptographic protocols proposed in
[21] and [20], while leaving detailed discussion about security
properties to the original papers. In these systems, each pa-
tient is assumed to have a trusted online (i.e. networked) en-
tity called a patient-centric monitoring agent. Such a mon-
itoring agent works as a “reference monitor” [28] for the pa-
tient’s EHRs that are stored and accessed in a distributed
E-healthcare systems and can be deployed, for example, on
a third-party service provider or on the patient’s own server
hosted in a cloud. When an EHR is created and submitted
to an EHR repository by an issuer (e.g., doctors or other
healthcare professionals), the EHR issuer is required to fol-
low a specific protocol called Accountable Update, which en-
forces the involvement of the patient’s monitoring agent by
means of cryptographic primitive and public key infrastruc-
ture where each participant is issued a digital certificate by
a trusted certification authority. The architecture and mes-
sage flow is shown in Figure 1. On the other hand, the
same monitoring agent is involved when the EHR is con-
sumed in a meaningful way, e.g., medical treatments, insur-
ance and billing services. Typically, such meaningful oper-
ations at legitimate consumers such as hospitals, insurance
companies, and Centers for Medicare and Medicaid Services
are accompanied by the integrity verification of the EHR
through digital signatures, so the monitoring agent is de-
signed to be involved in the verification process. The pro-
tocol is called Accountable Usage (Figure 2), and mediation
by the monitoring agent is guaranteed by means of a special
cryptographic scheme called Universal Designated Verifier
Signatures (UDVS) [32]. UDVS can create digital signa-
ture that can be only verified by a designated entity, and
thereby even if unauthorized sharing or data leakage would
occur, such an EHR can not be “meaningfully” consumed by
another consumer without involving the monitoring agent.
Messages and entities shown in these figures are protected
and authenticated by using public / private keys assigned
to each entity. In this way, a patient’s monitoring agent can
know when and by whom an EHR is created and consumed
and thereby can guarantee patients’ awareness about such
events.

On top of this patient-centric monitoring agent and the
associated protocols, use of a accountability tag is proposed
in [20]. An accountability tag is a metadata that an EHR
repository attaches to each copy of an EHR when the record
is released. Such tags carry cryptographically-verifiable evi-
dence about entities that are involved in EHR sharing. Ac-
countability tags are verified and logged, whenever shared
EHRs are consumed or submitted to another EHR reposi-
tory, by the patient-centric agent, which later allows a pa-
tient to derive how and by whom a certain EHR was shared
and eventually consumed. Generation and verification of
accountability tags are done as follows by using a standard
digital signature scheme. A denotes an insider who is an
employee of a healthcare organization that stores a patient
P ’s health record. A intends to share the record with an
external entity B. RepoA denotes the repository of A’s or-
ganization. Since B is external to the organization, it does
not have direct access to RepoA. By [data]entity, we mean
that data is signed with entity’s private key. The scheme is
also illustrated in Figure 3.

1. A authenticates itself to RepoA to request P ’s record.

Figure 1: Overview of Accountable Update Protocol.
The EHR issuer creates a health record or update
and makes his digital signature on it. This signature
is encrypted with the monitoring agent’s public key.
Next, it sends the record and the encrypted signa-
ture to the repository (M1). The repository then
contacts the patient’s monitoring agent to obtain the
proof of patient’s authorization (M2 and M3). After
accepting the record, the repository issues verifiable
receipts to the monitoring agent as well as the issuer
(M4 and M5).

Figure 2: Overview of Accountable Usage Protocol.
When receiving a health record, a consumer needs
to contact the monitoring agent (M1) because the
signature is encrypted. The monitoring agent logs
the usage and then decrypts the signature. Instead
of returning the signature in plain text, it creates a
non-transitive, designated signature using Universal
Designated Verifier Signature scheme so that only
the specific consumer can be convinced with valid-
ity of the issuer signature. Then the designated
signature is returned (M2). Finally, the consumer
can verify the designated signature with the issuer’s
public key.

2. RepoA creates PreTag= [CERTA,M]RepoA , where CERTA

is A’s public key certificate issued by a trusted CA
and M represents the metadata of the corresponding
record, including the record’s hash value. M is stored
on the repository with the record when Accountable
Update was executed in the past.

3. A, before sharing the record with an external entity
B, signs PreTag with its own private key along with
B’s identity as destination, namely Tag= [CERTB ,
PreTag]A. We call this step “tag activation.”

4. A sends the record, including the metadata M , and
Tag to a recipient B via encrypted and authenticated

Figure 3: Overview of an Accountability Tag: A
downloads a record with PreTag from the repository,
and shares the record and Tag with B after tag acti-
vation. B, after tag confirmation, can either submit
the record to its own repository (dotted arrows) or
present the record and tag to a legitimate consumer
(C). In both cases, valid accountability tags must be
presented to and verified by the monitoring agent.

channel established with A and B’s keys. Upon its
receipt, B can check if the entity that activated the
tag, A in this case, is actually the party sending the
record and tag.

5. B signs Tag before using it. We call this step “tag
confirmation” and denote the resulting tag as CTag.
When B uses the health record at some consumer or
submits the shared record to its repository, it needs to
present CTag with the record.

Since M in an accountability tag contains a hash value of
an EHR, it is strictly coupled with the specific EHR. More-
over, to counter replay attacks, M contains timestamp for
freshness verification. Each accountability tag carries verifi-
able identities of the repository that released the copy of the
health record, the source of the sharing that downloaded the
record from its repository, and the destination of the shar-
ing (e.g., requesting entity in another organization). Three
stages of a tag denoted as PreTag, Tag, and CTag corre-
spond to these three identities that are to be verified. While
each accountability tag conveys information about one-hop
of the sharing path, accumulated tags allows patients to re-
liably reconstruct the entire sharing path, and thereby a
culprit liable for an incident can be traced back.

The functionality of the monitoring agent discussed above
can be naturally deployed within a healthcare organization
as part of its auditing / logging mechanism, which is in-
cluded in PCAST (President’s Council of Advisors on Sci-
ence and Technology) recommendations [15]. An issuer of an
EHR, e.g., a doctor or a nurse, executes Accountable Update
when creating or updating health records on a repository,
which is usually hosted within the healthcare organization.
A consumer of the EHR can be an insider of the healthcare
organization or an entity in another organization in case the
record is shared. In both cases, Accountable Usage proto-
col, involving the organization’s monitoring agent, is run to
meaningfully consume the data. Note that, in this way, the
healthcare organization’s monitoring agent can mediate us-
age of EHRs even after the health records are released to

other organizations. Furthermore, as discussed above, sets
of accountability tags logged on the organization’s monitor-
ing agent enable the organization to know how the records
are shared and consumed, which satisfies our accountability
goal.

2.2 Countermeasures against Malware Attacks
and Malicious Users

The scheme discussed in Section 2.1 assumes that private
keys reliably authenticate the owners, and it tells patients
whose private keys are involved in health record sharing and
usage. If private keys are somehow stolen and misused, the
information that is known to the organization’s monitoring
agent would become inaccurate. Even though storing pri-
vate keys on devices is not considered as good convention,
it is in practice often done mainly for the sake of conve-
nience. The same holds for signed accountability tags. To
reinforce healthcare organizations’ awareness and informa-
tion accountability, such risks need to be minimized. Then,
our security goals are:

(I) Private keys stored on client devices are protected
against malware and malicious system users (includ-
ing attackers that physically compromised the de-
vices)

(II) Accountability tags signed by a device user (i.e., Tag
or CTag introduced in Section 2.1) must be protected
against malware and malicious system users

If malware can successfully be installed on a client de-
vice, it could allow attackers to steal identity credentials,
including a private key, misuse such credentials to abuse
systems, and disclose sensitive data to unauthorized parties.
These attacks are possible even in the presence of anti-virus
software due to their inability to handle zero-day attacks
effectively. To counter malware attacks, we design client
devices using system virtualization to establish a trusted do-
main, which is isolated from an untrusted user domain that
hosts regularly-used application and thereby could be com-
promised by malware, within a device. Then, we can store
important client-side modules and data, including ones used
to access sensitive healthcare data or ones to manage ac-
countability tags, within the trusted domain, while leaving
only the minimal functionality in the user domain. We as-
sume that the trusted domain is configured by an system
administrator of the organization before the device is given
to a system user.

To mitigate the attacks mounted by malicious system users,
which may include disgruntled insiders or external attack-
ers that physically stole client devices, ability to remotely
revoke misbehaving devices (and private keys tied to the de-
vice owners) is a key. By doing so, we can shorten the win-
dow of attack and minimize the loss. Since, in such cases,
an attacker has full control over the compromised device
and thereby could potentially disable any security features
deployed there, including anti-virus software, firewall soft-
ware, and the trusted domain described above. In this di-
rection, we propose an application of the idea developed in
[22], where, under threshold signature scheme [29], only a
partial private key is stored on a client device and an on-
line trusted entity run by a healthcare organization, e.g., an
organization’s monitoring agent in the context of this work,
needs to be involved to generate complete digital signatures

required for completing operations on EHRs. Client devices
of our design is no longer a single point of attack to subvert
the system, and, by simply updating the configuration on
the monitoring agent, we can revoke compromised or stolen
devices so that they can no longer be used to access pro-
tected health data and the organization’s E-healthcare sys-
tems. Note that the threshold signature scheme is used to
enforce mediation by a monitoring system, which is different
from the typical usage of it.

Next, we present the high-level implementation of the
ideas discussed in this section. The overview of the archi-
tecture using Xen-like system virtualization technology [9]
is shown in Figure 4. As can be seen, the device has two

Figure 4: High-level Idea of Client Device Design
Using System Virtualization and Threshold Cryp-
tography

domains, which are securely isolated by the virtual machine
monitor (VMM) from each other. Outside of the device,
the organization’s monitoring agent is run on a server in the
healthcare organization that is accessible via network.

In the trusted domain, we deploy a module, Tag Manager
shown in the figure, to activate or confirm accountability
tags by using the device user’s private key. Also, the de-
vice user’s credentials, including his private key, are stored
in the trusted domain, too. The private key is actually split
into three pieces (a.k.a. key shares) under 2-3 threshold sig-
nature scheme [29], and only one of them is stored in the
trusted domain of the device. As discussed above, another
share is stored at the organization’s monitoring agent, and
the last piece, which is not shown in the figure, is held in an
offline, safe place by a privileged person or a group, which we
call authority, in the organization to realize“break-the-glass”
access in case the organization’s monitoring agent is not ac-
cessible for some reason. Under the 2-3 threshold signature
scheme, either the authority’s key share or the organiza-
tion’s monitoring agent’s, in addition to the one stored on
the trusted domain of the device, must be involved to make
a valid signature on an accountability tag. The user domain
is a virtual machine that is regularly used by a device user
for web browsing, writing / reading emails, using productiv-
ity software, accessing calendars, and so forth. We can use
dom0 (a privileged domain) of Xen as a trusted domain and
additionally create one user domain.

Because of the isolation provided by VMM, the user do-
main and the trusted domain, even though they are on the
same physical device, are treated as two different machines.
Thereby, the processes in the user domain do not have di-
rect access to the resources in the trusted domain. This im-
plies that malware in the user domain can not compromise
the modules and credentials in the trusted domain. On the
other hand, the two domains can communicate via network,

just as two physical devices connected to the same local area
network can do so. Xen allows us to provide either NATed
or bridged network connection for the user domain. In our
implementation, NATed connection is used, and the user do-
main is assigned a private IP address that is different from
the network to which the physical device is connected.

To provide an interface for the user domain to invoke the
functionality provided by the trusted domain, such as Tag
Manager, we implement the features in the trusted domain
as web application so the device user can access the fea-
tures via a regular web browser running in the user domain.
Namely, a device user can upload PreTag or Tag via the web
browser or NFS to have it activated or confirmed. After re-
ceiving the request, Tag Manager is loaded in the trusted
domain, which makes a partial signature on the provided
tag. Then, Tag Manager sends the partially activated / con-
firmed tag to the organization’s monitoring agent to obtain
a complete signature on the tag.

In this way, we can protect the client-side modules and
credentials (e.g., a private key share) from malware that
could potentially be installed in the user domain. We can
also mitigate the risk of physical device theft and abuse by
malicious insiders by enforcing the mediation by the trusted
monitoring system run by the organization, which also en-
ables timely revocation when device misuse is suspected. At
the same time, system availability is ensured by the key
share available from the authority. We then design the ar-
chitecture in the trusted domain so that the tags signed by
the device user will be deleted just after usage and also must
not be handed to the user domain, in order to fully satisfy
the goal (II).

3. HANDLING AND SHARING OF ELEC-
TRONIC HEALTH RECORDS

Figure 5: Overview of the System Architecture

In this section, we present the entire system architecture
including the client-device design and the monitoring system
discussed in the previous section. We also explain how they
are utilized when processing typical operations on electronic
health records (EHRs), namely download, upload, sharing,
and usage. Correctness of the design is discussed later in
Section 4.

The complete system architecture is shown in Figure 5. In
the figure, dotted line indicates the boundary of a manage-
ment domain (e.g., a healthcare organization). In addition
to Tag Manager, which is briefly discussed in the previous

section, in the trusted domain are a number of modules for
EHR handling. We will explain how these components in-
teract next.

3.1 Downloading Electronic Health Records from
a Repository

Figure 6: Downloading Electronic Health Records

We first discuss how system users in a healthcare orga-
nization can download EHRs from an organization’s EHR
repository (Figure 6). A user controls a web browser in-
stalled in the user domain of her client device to send a
HTTP request including an identifier of a health record to
be downloaded (1). When the request is received by EHR
Downloader module in the trusted domain, it loads an iden-
tity credential required to access the repository (2 and 3).
Various kinds of credentials can be used depending on the
configuration of each organization, but in our current proto-
type, a password is used. Intuitively, Credential Storage here
can be viewed as a malware-resistant password manager. Af-
ter loading the identity credential, EHR Downloader sends
a download request to the repository (4 and 5), which gives
a requested health record back to EHR Downloader. The
downloaded record is accompanied by an accountability tag
(more specifically, PreTag). The downloaded record is then
stored in the dedicated storage space, EHR Storage, in the
trusted domain (6). In other words, the downloaded records
are not directly accessible to the user domain.

3.2 Consuming Electronic Health Records

Figure 7: Consuming Downloaded Electronic Health
Records

When a device user wants to verify and meaningfully con-
sume an EHR downloaded in the way discussed in Section
3.1, EHR Verifier is used. The process is outlined in Figure
7. A device user sends a HTTP request to EHR Verifier in

the trusted domain by using a browser in the user domain
(1). In the request, the user indicates which record she wants
to use. Based on the request, EHR Verifier loads the record
stored in EHR Storage (2 and 3). Then, EHR Verifier ex-
tracts an accountability tag of the record and passes it to
Tag Manager to have it activated and confirmed (4). Tag
Manager, after making a partial signature on the tag by
using the private key share stored in Credential Storage (5
and 6), sends the tag to the organization’s monitoring agent
to complete the device user’s signature (7 and 8). In case
the authority’s key share is provided and accessible to Tag
Manager, the interaction with the organization’s monitoring
agent can be legitimately bypassed. The same applies to the
schemes discussed in Sections 3.3 and 3.4. Note that, by de-
sign, the downloaded record is only accompanied by PreTag
signed by the repository, so before running Accountable Us-
age, the tag must be activated by specifying the device user’s
own identity as the destination of the tag and then must be
confirmed with the device user’s own private key. Thus, the
interaction with the monitoring agent must be done twice.
After the tag confirmation, EHR Verifier executes Account-
able Usage protocol by using the confirmed accountability
tag (10 and 11). After successful completion of the protocol,
EHR Verifier can be convinced about the authenticity and
integrity of the health record through the EHR issuer’s sig-
nature. After successful verification the record is eventually
returned to the user domain (12). Here, the accountability
tag is not given to the user domain, and deletion of the tag
that is activated and confirmed during the process above is
ensured by EHR Verifier.

It is often the case where a record shared from another
entity needs to be used on the device. This case can also be
handled with a similar procedure, but in advance, the shared
record must be uploaded to the trusted domain. Another
difference is that, since the shared record is accompanied by
Tag activated by the record sender, the device user in this
case only needs to confirm the tag. So, at most one inter-
action with the organization’s monitoring agent is required.
The mechanisms for sharing will be discussed next.

3.3 Sharing Electronic Health Records

Figure 8: Sharing Electronic Health Records

Regarding the health record sharing, we only consider the
case in which a device user shares a health record that is
downloaded onto the device in advance. This is because,
as discussed in Section 2.1, legitimate sharing requires an
appropriate accountability tag (PreTag) issued by the or-
ganization’s EHR repository upon downloading the health

record. In addition, we here consider sharing under Direct
standards [1] since it will be the widely-adopted standard
that is expected to be used not only by large healthcare
organizations but also by small doctor offices.

The flow is shown in Figure 8. Before sharing a health
record, an accountability tag must be activated by indicating
the destination’s identity. This task is accomplished by using
EHR Sharer. The device user sends a request, which speci-
fies the destination’s identity and the record to be shared, to
EHR Sharer in the trusted domain (1). From EHR Storage,
EHR Sharer loads the requested record and the accountabil-
ity tag (PreTag) accompanying it (2 and 3). Then it passes
the tag and destination’s identity to Tag Manager to have
the tag activated (4). Just like the cases discussed earlier,
Tag Manager does its task by involving the organization’s
monitoring agent in the loop (5, 6, 7, and 8). After the acti-
vated tag (Tag) is returned (9), EHR Sharer sends the record
and activated tag to the designated recipient via SMTP with
S/MIME, following Direct standards (10). Again, the acti-
vated tag is deleted by EHR Sharer just after it is sent out
with the health record.

3.4 Uploading Electronic Health Records to a
Repository

Figure 9: Uploading Electronic Health Records

Lastly, we discuss the procedure when a device user sub-
mits an EHR to her organization’s repository. Here, we
need to consider two possibilities. One is the case where
the device user creates a brand-new record (or a record up-
dated / edited by herself) and adds it to the repository, and
the other is the case where the device user submits a health
record that is shared from another entity. These two cases
are handled in a similar way, but one big difference is that
the latter case involves an accountability tag while the for-
mer does not as explained in Figure 3. The flow is illustrated
in Figure 9.

In both cases, the process starts with uploading a health
record to EHR Uploader in the trusted domain (1). If an up-
loaded record is a health record shared from another entity
and is accompanied by an accountability tag, EHR Uploader
then passes the tag to Tag Manager (2). Since the tag is as-
sumed to be activated already by a party who released the
EHR, Tag Manager only does tag confirmation, by using the
private key share stored in Credential Storage as well as one
held by the organization’s monitoring agent (3, 4, 5, and 6).
After the confirmed tag is returned (7), EHR Uploader initi-
ates Accountable Update protocol (8). Following the defined
protocol, the organization’s EHR repository contacts the or-

ganization’s monitoring agent (9 and 10). The accountabil-
ity tag used in the process is deleted by EHR Uploader after
the completion of Accountable Update. In case a new health
record is submitted, EHR Uploader does not have to handle
an accountability tag (and thereby does not have to involve
Tag Manager and the organization’s monitoring agent), so
it just executes Accountable Update.

4. CORRECTNESS OF DESIGN AND SECU-
RITY DISCUSSION

In this section we summarize how our design satisfies the
security goals defined in Section 2.2. Other security aspects
will be also discussed.

The complete private key is not stored on the device, and
key shares are distributed on the device and the organiza-
tion’s monitoring agent. Thus, even in case the device is
physically under the control of an adversary, it alone will
not allow him to misuse the private key to handle account-
ability tags. Once the device theft is reported by the legit-
imate device user, the key share stored on the device can
be easily revoked simply by disabling the corresponding key
share stored on the organization’s monitoring agent. The
same applies to the case where devices are misused by insid-
ers. Regarding malware threats, due to the domain isolation
and the system design discussed in Section 3, malware in a
user domain has no way to touch the private key share in
the trusted domain. Therefore, the goal (I) is satisfied.

Concerning accountability tags, tags that are signed with
the device user’s key never flow into the user domain, and
they are reliably deleted from the device by trusted modules
in the trusted domain immediately after the usage, which
implies that even if the device is stolen afterwards, the ad-
versary will not obtain the tags activated or confirmed by
the device user. Thus, such tags are protected from malware
in the user domain and physical device theft. Health records
shared from another entity can be in the user domain, but
tags attached to those records are not signed by the device
user (i.e., the designated destination of the accountability
tag). As long as accountability tags are not confirmed, they
can not be meaningfully used (or misused) at consumers un-
der our assumption. Therefore, the goal (II) is also satisfied.

Related to the tags, in the case discussed in Section 3.2,
the health record is given to the user domain. If the device
user leaves it on the user domain, a thief could read the
contents. However, it is not accompanied with any account-
ability tag, which implies that the data can not be shared in
a meaningful way or used at consumers for any gain. Note
that, though it is important, protection of data confidential-
ity under these threats is not our goal. Confidentiality is
usually ensured by means of encryption, such as [11], [26],
and [13], and it is orthogonal to our work.

Sophisticated malware could emulate a device user’s ac-
tion and send HTTP requests to manipulate the modules
in the trusted domain. Though it is not addressed by our
system alone, there are a number of ways to counter such
threats. For instance, we can use CAPTCHA [33] to differ-
entiate malware from human users. As we mentioned earlier,
modules in a trusted domain are implemented as web appli-
cations, so integration of security mechanisms that aim at
protecting web applications, such as CAPTCHA, are effec-
tive and straightforward. Another countermeasure against
such malware is to take advantage of the system virtualiza-

tion and virtual machine introspection (VMI), which allows
a trusted virtual machine (e.g., dom0 in case of Xen [9]) to
know the internal state of other virtual machines. For in-
stance, we can deploy a tamper-resistant firewall system in
the trusted domain. VMWall system [31] can fit our device
architecture and can be used to block network connections
from the user domain whose origin is an unauthorized pro-
cess under the control of malware. Gyrus system [27] takes
advantage of hardware events, such as mouse or keyboard
events, and VMI to “interpret” the device user’s intention,
which can then be used for security-related authorization by
the trusted domain, e.g., whether network connection initi-
ated by a user domain should be allowed. Since malware can
not generate hardware events, malicious network connection
by malware can be blocked. These schemes are orthogonal
to our work and thereby are not included in this paper.

Regarding the security of the authority’s key share, Xen,
by default, does not allow a user domain to access USB
device. Therefore, we can use a USB drive to deliver the
authority’s key share securely to the trusted domain, and
the trusted domain can ensure deletion of the key share
from the device after its use. However, our scheme might
allow an malicious insider to secretly keep the authority’s
key share and reuse it later to bypass the monitoring agent.
This threat can be countered by revoking the key pair as-
signed to the device user and then issuing new one to him
after the emergency situation is resolved. Although such re-
vocation may cause extra burden on system administrators,
such a situation is expected to be very rare, so we think it
is acceptable.

5. IMPLEMENTATION AND SYSTEM PER-
FORMANCE

This section presents the experimental results related to
the performance of the proposed system. We implemented a
secure client device on a laptop PC with Intel Core i5-2520M
processor and 4GB RAM. On the machine, we set up two
virtual machines (dom0 and one user domain) using Xen 4.1.
The user domain is allocated 1GB RAM and 1 CPU core,
and both domains run Debian Linux. The client device is
connected to the cable TV Internet service via a commodity
WiFi router. We implemented an organization’s monitoring
agent and EHR repository on a server machine with Intel
Xeon 5150 processor and 8GB RAM, which is connected to
the Georgia Tech campus network.

In our implementation, messages sent and received be-
tween EHR Downloader and an organization’s EHR repos-
itory (4 and 5 in Figure 6) are implemented as HTTP re-
quest and response. It can be easily replaced with HTTPS
for confidentiality and integrity protection when necessary.
Messages between the other modules in the trusted domain
and an organization’s monitoring agent (for example 7, 8,
10, and 11 in Figure 7) and messages between an organi-
zation’s EHR repository and an organization’s monitoring
agent (9 and 10 in Figure 9) are implemented as serialized
Java objects.

Below, we present response time measurements at a user
domain on the client device. We measured the average re-
sponse time of each process discussed in Section 3.1 through
3.4 using files of different sizes, namely 500KB, 1MB, 5MB,
and 10MB. We measured the response time of each process
with each file size 20 times and plotted the average of them.

The results are summarized in Figures 10, 11, 12, and 13.

500 1000 2000 5000 10000

0
2

4
6

8

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
2

4
6

8

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

EHR Downloader
SCP

Figure 10: Average Response Time When Down-
loading EHR

In Figure 10, we plotted average response time for each
file size when a device user downloads an EHR from the or-
ganization’s repository by using EHR Downloader. In addi-
tion, for the sake of comparison, we plotted average response
time when the same file is downloaded via scp (secure copy)
run in the trusted domain. We can see that, up to 5MB,
downloading EHRs using our scheme does not have notice-
able overhead, and major portion of the response time is
attributed to the file transfer time. Thus, for regularly-used
file sizes, we expect that device users will not notice any
difference. Even in the case of the 10MB file, the delay is
below 2.5 seconds.

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

EHR Verifier w/o Authority Key Share (Downloaded Record)
EHR Verifier w/ Authority Key Share (Downloaded Record)
EHR Verifier w/o Authority Key Share (Shared Record)
EHR Verifier w/ Authority Key Share (Shared Record)

Figure 11: Average Response Time When Consum-
ing EHR

Figure 11 shows average response time when a device user,
by using EHR Verifier, verifies the digital signature on EHRs
downloaded from the repository or shared by another entity.
Each case can be handled in two different ways: with an au-
thority’s key share or without it. As can be seen, verification
of downloaded records takes longer time. The main reason
for this is that an accountability tag must be activated and

confirmed before executing Accountable Usage protocol in
this case. On the other hand, when using shared records,
activation is not necessary. In addition, when an authority
key share is provided via a USB drive, interaction with the
organization’s monitoring agent can be omitted, which re-
sults in shorter response time. Overall, the response time
is not significantly affected by the file size. Even when the
file size is 10MB, the average response time is at most 1.2
seconds.

500 1000 2000 5000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

EHR Sharer w/o Authority Key Share
EHR Sharer w/ Authority Key Share

Figure 12: Average Response Time When Sharing
EHR

For the response time when sharing EHRs, we measured
the time to prepare data to be emailed. So, email transfer
time is not included. The results are shown in Figure 12.
The solid line corresponds to the results when an authority
key share is provided to EHR Sharer while the dotted one is
based on the results when the key share is not provided. The
difference between two lines is primarily attributed to the
extra interaction with the organization’s monitoring agent
upon tag activation.

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

EHR Uploader (New Record)
EHR Uploader w/o Authority Key Share (Shared Record)
EHR Uploader w/ Authority Key Share (Shared Record)
SCP

Figure 13: Average Response Time When Upload-
ing EHR

Average response time when uploading EHRs to a reposi-
tory can be found in Figure 13. As discussed in Section 3.4,

we evaluated two scenarios: submission of a newly-created
record and submission of a shared record. The latter can
further be split into two cases: with and without an au-
thority key share. In addition, we also plotted, in the same
figure, the response time in case scp is used to upload the
same files.

As expected, for all cases, the response time goes up as
the file size increases, just like the case of EHR download.
Then, we focus on the overhead of our system over scp. The
overhead in response time is approximately 0.3 second, 0.5
second, and 0.7 second in case of the 500KB, 1MB, and 5MB
file respectively, which are not significant. When a 10MB
file is uploaded, the overhead is approximately 1.7 seconds.
However, we believe it is still within the acceptable range,
considering the benefit of security assurance for patients as
well as healthcare organizations involved.

Regarding the difference between the two plots with EHR
Uploader for shared records, we can find that, especially for
small files, the response time is slightly smaller on average
when the authority key share is provided to the device. Also,
submission of new records takes shorter time than submis-
sion of shared records. These observations can be explained
by the overhead incurred by accountability tag handling, in-
cluding threshold cryptography operations. However, when
the file size increases (e.g., 5MB and 10MB), the difference
becomes almost negligible. One possible reason for this is
that, for large files, the overhead of additional tasks required
to prepare a protected record to be submitted in case of the
new-record submission, such as generating a UDVS signa-
ture, outweighs the overhead of accountability tag prepara-
tion.

6. RELATED WORK
In the e-healthcare domain, recent projects have explored

secure storage of health records in a cloud. Benaloh et al.
proposed PCE (Patient Controlled Encryption) to protect
health records by means of encryption [11]. A similar goal
is also pursued by Narayan et al. [26]. The primary fo-
cus of these schemes is to ensure confidentiality of health
records against unauthorized parties, including cloud stor-
age providers. We agree that such encryption-based pro-
tection is necessary, but it alone is not sufficient to ensure
patient awareness and control, especially after health records
are released.

Many of the MAC (mandatory access control) schemes
and implementations are designed for a single system (or
a single device). In other words, a reference monitor de-
ployed on a system only monitors and controls accesses to
resources on the same machine. If the entire systems and
data were completely centralized, such a scheme would be
sufficient. However, unfortunately it is not the case in e-
healthcare systems. A reference monitor design that covers
multiple machines is presented in [23] by using remote attes-
tation and system virtualization techniques. However, such
a system still requires a single entity (e.g., a system admin-
istrator) that manages the entire system. Therefore, in a
distributed setting that spans multiple organizations, it is
not necessarily a suitable solution.

Another type of approach for information flow control is
data or traffic tainting, such as [7] and [25]. Ahmed [7]
designed a scheme to control information flow on mobile
devices used by healthcare professionals to access patients’
records. This system relies on TaintDroid [12] to taint sensi-

tive data and monitors flow of such data across application
boundaries, into removable storage, and into network inter-
faces. However, its primary focus is on countering the risk
of malicious applications installed on mobile devices, and
it controls the information flow only within a single device,
which implies that it shares the drawbacks of MAC schemes
discussed above.

In [18], a secure e-healthcare client platform design using
virtualization is explored. In this scheme, a client device is
split into a number of domains (i.e., virtual machines) used
for different purposes (Trusted Virtual Domains). When
a data crosses domain boundaries, it is automatically en-
crypted by the security kernel with a key that belongs to
the corresponding domain, and thereby can not be accessed
by processes in other domains. Although such a system is
effective in reducing information leakage risk on client de-
vices, it does not emphasize patients’ awareness and control.
Moreover, effectiveness when deployed across multiple orga-
nizations is questionable.

On the other hand, the general problem of data protec-
tion and reducing the likelihood of data misuse has been
addressed in several different contexts. The Keypad system
[14] aims at detecting data misuse when mobile devices stor-
ing sensitive data may be lost or stolen. Although such a
scheme allows a data owner or patient to be informed of data
access when the data is physically located in a remote loca-
tion, Keypad does not address the situation where threats,
such as malware infections or malicious insiders, are present.
Specifically, in case decrypted copies of the data is leaked
by malware or malicious users, accesses to the compromised
copies are no longer monitored.

7. CONCLUSION
In this work, we designed a secure auditing and manage-

ment mechanism for electronic health records and client de-
vices used in healthcare organizations. Our scheme allows
healthcare organizations to keep track of usage and sharing
of their electronic health records by insiders as well as ex-
ternal entities. Such awareness can be ensured even after
health records are released to other organizations as a result
of health information exchange. In addition, to reinforce re-
liability of these security mechanisms, we also proposed a
novel design of E-healthcare client devices using system vir-
tualization in such a way that credentials on client devices
are protected against malware attacks and physical device
thefts and also misbehaving devices can be quickly revoked.
Through the prototype implementation, we demonstrated
the enhanced security does not incur unacceptable over-
head upon creation, usage, and sharing of electronic health
records.

Robust awareness and accountability over electronic health
records will enable healthcare organizations to provide verifi-
able information to patients when suspicious events are iden-
tified or reported or whenever patients inquire, which im-
proves patient’s confidence on emerging E-healthcare tech-
nologies and encourage their broad deployment. Because
our system design does not require any significant change or
extra burden on patients, it is more practical and readily-
deployable than purely patient-centric approaches [21][20].
Thus, we believe the proposed system can fill the gap be-
tween the current E-healthcare systems and patient-centric
electronic health record systems that will be desired in the
future.

8. REFERENCES
[1] Direct Project. http://wiki.directproject.org/.

[2] EHR Incentive Programs.
http://www.cms.gov/Regulations-and-Guidance/

Legislation/EHRIncentivePrograms/index.html.

[3] Meaningful Use Announcement. http://healthit.
hhs.gov/portal/server.pt/community/healthit_

hhs_gov__meaningful_use_announcement/2996.

[4] 3rd HIPAA criminal case hints at federal tactics.
http://www.ama-assn.org/amednews/2006/10/16/

gvsb1016.htm, 2006.

[5] 52 arrested in sweeping Medicare fraud case.
http://articles.latimes.com/2010/oct/14/local/

la-me-healthcare-fraud-raid-20101014, 2010.

[6] Accelerating Progress on EHR Adoption Rates and
Achieving Meaningful Use. http:
//www.healthit.gov/buzz-blog/meaningful-use/

ehr-adoption-rates-and-achieving-meaningful-use/,
2012.

[7] M. Ahmed and M. Ahamad. Protecting health
information on mobile devices. In CODASPY, pages
229–240, 2012.

[8] R. Aldeco-Pérez and L. Moreau. Provenance-based
auditing of private data use. In BCS Int. Acad. Conf.,
pages 141–152, 2008.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, pages 164–177, 2003.

[10] D. Bell and L. LaPadula. Secure computer systems:
Mathematical foundations and model. MITRE CORP
BEDFORD MA, 1(M74-244), 1973.

[11] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter.
Patient controlled encryption: ensuring privacy of
electronic medical records. In Proceedings of CCSW
2009, pages 103–114. ACM, 2009.

[12] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, pages 393–407,
2010.

[13] R. Gardner, S. Garera, M. Pagano, M. Green, and
A. Rubin. Securing medical records on smart phones.
In Proceedings of SPIMACS 2009, pages 31–40. ACM,
2009.

[14] R. Geambasu, J. John, S. Gribble, T. Kohno, and
H. Levy. Keypad: An Auditing File System for
Theft-Prone Devices. In Proceedings of EuroSys 2011,
2011.

[15] M. D. Green and A. D. Rubin. A research roadmap
for healthcare it security inspired by the pcast health
information technology report. In Proceedings of the
2nd USENIX conference on Health security and
privacy, HealthSec’11, Berkeley, CA, USA, 2011.
USENIX Association.

[16] T. Kifor, L. Varga, S. Álvarez, J. Vázquez-Salceda,
and S. Willmott. Privacy issues of provenance in
electronic healthcare record systems. Journal of
Autonomic and Trusted Computing (JoATC), 2008.

[17] J. King, B. Smith, and L. Williams. Modifying
without a trace: General audit guidelines are
inadequate for electronic health record audit

mechanisms. In Proceedings of ACM IHI 2012, 2012.

[18] H. Löhr, A. Sadeghi, and M. Winandy. Securing the
e-health cloud. In Proceedings of ACM IHI 2010,
pages 220–229. ACM, 2010.

[19] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the Linux operating
system. In Proc. 2001 USENIX Annual Technical
Conference-FREENIX Track, pages 29–40, 2001.

[20] D. Mashima and M. Ahamad. Enabling Robust
Information Accountability in E-healthcare Systems .
In 3rd USENIX Workshop on Health Security and
Privacy, 2012.

[21] D. Mashima and M. Ahamad. Enhancing
accountability of electronic health record usage via
patient-centric monitoring. In Proceedings of the 2nd
ACM SIGHIT International Health Informatics
Symposium, 2012.

[22] D. Mashima, M. Ahamad, and S. Kannan.
User-centric handling of identity agent compromise. In
Proceedings of ESORICS 2009, pages 19–36, 2009.

[23] J. McCune, T. Jaeger, S. Berger, R. Caceres, and
R. Sailer. Shamon: A system for distributed
mandatory access control. 2006.

[24] L. Moreau, P. T. Groth, S. Miles, J. Vázquez-Salceda,
J. Ibbotson, S. Jiang, S. Munroe, O. F. Rana,
A. Schreiber, V. Tan, and L. Z. Varga. The provenance
of electronic data. Commun. ACM, 51(4):52–58, 2008.

[25] Y. Mundada, A. Ramachandran, M. B. Tariq, and
N. Feamster. Practical Data-Leak Prevention for
Legacy Applications in Enterprise Networks.
http://smartech.gatech.edu/handle/1853/36612.

[26] S. Narayan, M. Gagné, and R. Safavi-Naini. Privacy
preserving EHR system using attribute-based
infrastructure. In Proceedings of CCSW 2010, pages
47–52. ACM, 2010.

[27] B. D. Payne. Improving Host-Based Computer Security
Using Secure Active Monitoring and Memory Analysis.
PhD thesis, Georgia Institute of Technology, 2010.

[28] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R.
Mahajan. Trusted computer system evaluation
criteria. In National Computer Security Center, 1985.

[29] V. Shoup. Practical threshold signatures. In Advances
in Cryptology-EUROCRYPT 2000, pages 207–220.
Springer, 2000.

[30] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance techniques. Indiana University
Technical Report, (IUB-CS-TR618), 2005.

[31] A. Srivastava and J. T. Giffin. Tamper-resistant,
application-aware blocking of malicious network
connections. In RAID, pages 39–58, 2008.

[32] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk.
Universal designated-verifier signatures. Advances in
Cryptology-Asiacrypt 2003, pages 523–542, 2003.

[33] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
Captcha: Using hard ai problems for security. In
EUROCRYPT, pages 294–311, 2003.

[34] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of OSDI 2006, pages 263–278.
USENIX Association, 2006.

