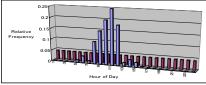


Risk Scoring Engine to Detect

Daisuke Mashima and Mustaque Ahamad

Motivation


- Growing use of online identity credentials – Passwords, certificates, SSN, etc.
 - Passwords, certificates, SSIN, etc.
 - Loss and theft due to phishing, malware, etc.
- Consequence of online identity theft
 - Impersonation
 - Disclosure of sensitive information
 - Financial loss for both users and service providers
- Many large companies rely on manual review.
 Huge amount of log records
 - Non-real time processing

Challenges

- Limited amount of information in access logs – E.g., user ID, timestamp, IP address, etc.
- · Limited types of events
- Only a login event in an extreme case
- Real-time score calculation
- · Reasonably high accuracy to reduce human effort

Anomaly-based Scoring

- Extract (categorical) **profiling attributes** from an individual log record
 - Timestamp (day-of-week etc.), IP address, etc.
- Construct a user profile as frequency distribution over categories of an profiling attribute
- Support multiple profiles per user
- E.g., Day-of-week profile and hour-of-day profile etc.
- · Implement data aging
 - Aiming at reducing the impact of older observations
 - Multiplying a decay factor with all frequency counts
- Calculate Base Score based on "unlikeliness" of an observed attribute value
 - Base Score = -log (Relative Freq. of Attribute Value)
- Determine *Weight* based on "effectiveness" of the corresponding profiling attribute.
 - Use "distance" between the frequency distribution and uniform distribution
 - Bhattacharyya Distance etc.
 - Example of an "effective" profiling attribute

- Sub Score = Base Score * Weight
- Aggregate Sub Scores to output Risk Score

Future Work

- Investigate other profiling attributes – Session duration, access frequency / interval, etc
- Implement in production environment
 White / Black list for score adjustment
 - Interaction with human operators
- Conduct detailed experiments and evaluation
- Integrate into other security mechanisms
 - Risk-based authentication systems
 - Other fraud / intrusion detection systems

Goals

• Secure monitoring of login (service access) requests in an automated and real-time manner

GEORGIA TECH INFORMATION SECURITY CENTER

- Computation of Risk Score based on suspiciousness of each access to help reduce burden on human experts
- Broad applicability by supporting general access log records

Preliminary Experiments

- Data set 1: University portal site
 - Profiling attributes:
 - Week of month, day of week, and hour of day
 - Decay factor for data aging:
 - 0 (without data aging) and 0.5 (with data aging)
- Data set 2: E-commerce company portal
 - Profiling attributes:
 - Week of month, day of week, and hour of day
 - Country, region (state), city
 - Organization name / ISP name
 - Decay factor for data aging: 0.5
- Methodology

Ta

ercent

- Scale scores in [0,100)
- Pick the max of sub scores
- Determine thresholds based on past scores
- False positive / True positive for Data set 1

ble 1	Results	s of False Posit	ive / True Po	ositive Evaluat	tion (without data aging)
	User	Access Freq.	Tentative	FP Rate	TP Rate
		[per Month]	Threshold		
	A	4	40	16.6 %	96.0 %
	B	25	20	0.0 %	90.0 %
	D	62	30	0.0 %	90.0 %

Table	2: Results of False Positive / True Positive Evaluation (with data aging)							
	User	Access Freq. [per Month]	Tentative Threshold	FP Rate	TP Rate			
	A	4	40	61.0 %	90.0 %			
	В	25	30	1.0 %	90.0 %			
	C	62	40	6.0 %	90.0 %			
	D	172	30	3.0 %	100.0 %			

- · False positive rate distribution for Data set 2
 - 9,50 • Mea • Std • 80 p • 90 p
 - 9,500 users
 - Mean: 0.14
 - Std dev.:0.25
 - 80 percentile: 0.20
 - 90 percentile: 0.43

Integration of Domain Knowledge

- Rule-based scoring module
 - Define scoring criteria tailored for each domain and setting, such as
 - Consecutive login failure
 - Simultaneous login with distant location
 - Speed contradiction
 - Access interval against distance moved
- Rule-based scores can be combined with anomaly-based scores.
 - Sum, max, weighted average etc.