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Abstract—Demand response (DR) is a promising technology for 

meeting the world’s ever increasing energy demands without a 

corresponding increase in energy generation, and for providing 

a sustainable alternative for integrating renewables into the 

power grid. As a result, interest in automated DR is increasing 

globally and has led to the development of OpenADR, an 

internationally-recognized standard in the area. In this paper, 

we propose security-enhancement mechanisms to provide DR 

participants with verifiable information that they can use to 

make informed decisions about the validity of DR signals.     

Index Terms—Power System Security, Privacy 

I. INTRODUCTION 

OpenADR2.0 standards [1] are being developed by the 
OpenADR Alliance to define a standardized communication 
model for automated demand response, including the 
messaging scheme used between a demand response (DR) 
automation server, for example at a utility, and DR 
participants. In recent years, DR automation servers are often 
operated by DR aggregation service providers (also called DR 
aggregators), which mediate the interactions and transactions 
between the utility company and DR participants.   

The security scheme implemented in OpenADR largely 
relies on well-established standards, such as TLS (Transport 
Layer Security) that ensures sender authenticity, message 
integrity, and confidentiality and XML Signature for non-
repudiation. While such mechanisms are effective in securing 
communication between a certain pair of nodes, they are not 
sufficient to attain end-to-end security in communication 
involving multiple hops (i.e., sequential pairs of nodes), which 
is often the case when DR aggregators are involved.  

In this work, we propose a mechanism to enhance security 
in multi-hop automated demand response communication that 
is compliant with the OpenADR2.0 protocol and schema. The 
proposed mechanism can be immediately implemented in any 
OpenADR2.0-based systems without affecting compatibilities. 
Our scheme allows end DR participants to reliably verify 
which entities are involved in the distribution path of DR 
event information (also called a DR signal or a DR event 

signal) and also the semantic consistency between a DR signal 
issued by the originating entity (e.g., utility) and the DR signal 
received from an intermediate entity (e.g., a DR aggregator). 
OpenADR enhanced with the proposed scheme can better 
protect DR participants and the entire power grid from being 
manipulated by malicious DR signals that may be inserted into 
the multi-hop DR signal distribution path by external attackers 
as well as compromised or dishonest intermediaries.  

The rest of the paper is organized as follows. In Section II, 
an overview of OpenADR2.0 communication model is 
provided, followed by a discussion of potential security issues. 
The proposed approach and design are described in Section 
III. We discuss related work in Section IV and conclude the 
paper with future work in Section V.  

II. OPENADR2.0 OVERVIEW 

In this section, an overview of the OpenADR2.0 standards, 
[1], is provided. OpenADR defines services that are subset of 
OASIS Energy Interoperation (EI) Version 1.0 [2] for 
automated demand response. The OpenADR2.0a profile 
defines the feature set for simple devices (e.g., thermostats), 
including EiEvent service used for distributing DR signals, 
while the latest 2.0b profile is designed for full-feature energy 
management solutions including DR aggregation. 

 

Fig.1: Communication Model in OpenADR 

In the communication model of OpenADR (and also of 
OASIS EI), nodes are organized in a tree-like structure and are 
categorized into Virtual Top Nodes (VTNs) or Virtual End 



Nodes (VENs). Some entities, such as DR aggregators, may 
include both VTN and VEN functionalities. An example of 
such architecture is shown in Fig. 1. In this work, the left-most 
node in the figure is called a top-most VTN, black nodes in the 
same figure are called end-most VENs, and the other nodes 
shown in white are called intermediaries.   

DR signals are sent via the EiEvent service, and 
oadrDistributeEvent payload sent by a VTN conveys the DR 
events. Note that all messages used in OpenADR2.0 are 
defined by an XML schema and are transferred over HTTP or 
XMPP. In an oadrDistributeEvent payload, there can be zero 
or multiple DR event signals, each of which is represented as 
eiEvent element. eiEvent contains a number of sub elements, 
such as identifiers of intended DR event targets (eiTarget). 
Among the sub elements, this paper focuses on the element 
that is most relevant to the proposed design, namely 
eventDescriptor. As the name implies, this element contains 
explanatory metadata about the DR event, such as the unique 
identifier of the event, event creation timestamp, current status 
of the event, and so forth. In addition, there are a couple of 
optional elements, including vtnComment element that can 
contain arbitrary text data provided by the VTN for the VEN.   

Regarding security, OpenADR2.0 defines only minimal 
features for hop-to-hop message confidentiality and integrity 
[1]. There are two security levels: Standard Security and High 
Security, and implementation of Standard Security is 
mandated. Standard Security just requires use of TLS, and 
client certificates have to be used for mutual authentication. 
High Security additionally requires use of XML Signature. 
Because of these requirements, we can assume that each node 
is equipped with a valid public / private key pair and a digital 
certificate issued by a trusted certification authority (CA).  

While the confidentiality and message integrity between 
two communicating parties, i.e., a VTN and VEN, is assured, 
such a hop-to-hop security mechanism may not be sufficient 
in cases where there exist one or multiple intermediaries 
between a top-most VTN and an end-most VEN. There may 
be a number of possible threats, but in this work, we consider 
ones caused by compromised or malicious intermediaries.  

First, an end-most VEN can only know and verify a 
message that is sent by its immediate parent. Although the 
VEN can verify the message integrity and sender identity 
through TLS, the VEN cannot verify the consistency between 
the received message and the message that was originally 
issued by the top-most VTN. In a typical demand response 
scenario, an intermediary, such as a DR aggregation service 
provider, receives a DR event signals from its VTN, processes 
the signal based on its own business logic, and eventually 
issues another DR signal for each of its VENs. Therefore, in 
normal situations, the messages sent to VENs must be 
semantically consistent with the original DR signal. However, 
without knowing the DR signal issued by the top-most VTN, 
there is no way for VENs to detect anomalous messages that 
are not consistent with the original DR message.  

Secondly, the OpenADR communication model implicitly 
assumes that all nodes in the upstream implement sufficient 
security protection and appropriately conduct verification of 
sender identity as well as message integrity. However, such an 

assumption is not often realistic in the setting where multiple 
heterogeneous organizations are involved. Lack of rigorous 
verification would open the door to attackers who attempt to 
insert bogus DR signals into a path between a top-most VTN 
and an end-most VEN.  

These problems could make VENs vulnerable against 
attacks. Namely, when a server working as an intermediary is 
compromised by malware and thereby manipulated by an 
attacker, it could try to send bogus, malicious DR signals to 
nodes in its downstream, potentially causing harm to the end-
customers, or even worse, the stability of the grid. Considering 
the tree-like structure of OpenADR communication model, 
compromise of nodes closer to the root would cause a broad, 
significant damage in the grid. Moreover, if a VEN deployed 
in an enterprise, such as a data center, is the target of an 
attack, it could pose monetary damage on the company. 
Similar issues could occur when a disgruntled insider of the 
organization running the intermediary intentionally transmits 
malicious DR signals to VENs. 

III. ENHANCED VERIFICATION OF OPENADR SIGNALS 

A. High-level Design of the Proposed Solution 

In this section, we present the approach to address the 
security issues discussed in the previous section. The proposed 
approach takes advantage of public-key infrastructure, which 
is already part of the requirements in OpenADR [1].  

Consider the situation where two nodes, called I1 and I2, 
mediate the DR signal transmission between a top-most VTN, 
T, and an end-most VEN, E. We assume that E knows (and 
can trust) at least T's digital certificate. T is usually a utility 
company that can be naturally trusted, so this assumption 
practically holds. The overview is shown in Fig. 2. [data]entity 
represents that data is signed with entity's private key. 

  

 

Fig.2: Verifiable DR Signal Distribution Path 

When T issues a DR event signal, it also generates a tag, 
which contains metadata (M) of the DR signal, which 
uniquely identifies and is tied to the DR event signal, e.g., a 
cryptographic hash value calculated by using the SHA-256 
algorithm, and the recipient's identity (I1), which can be a 
digital certificate, certificate fingerprint (usually constructed 
based on a cryptographic hash value of the certificate), or any 
type of unique identifier of the recipient and to be used by the 
recipient to retrieve the appropriate public key. The tag is then 
signed by T, resulting in P1. P1 is handed to I1 along with T’s 
DR event signal corresponding to M, which we call DRt 
hereafter, and I1's identity. I1 can then specify the next 
recipient, I2, and signs the pair of P1 and I2's identity. The 
generated tag, called P2, together with P1, I1’s identity, I2’s 
identity, and DRt are sent to I2. Likewise, I2 generates a signed 
tag P3 and hands it with P1, P2, I1’s identity, I2’s identity, E’s 
identity, and DRt to E.  

Although in the figure only one node is depicted at each 
tier, it is possible that there are multiple nodes. In such a case, 



a tag is generated for each recipient. For instance, if there is 
another end-most VEN E', I2 needs to prepare a different tag 
whose destination is set to be E'. We assume that utilities and 
intermediaries, e.g., DR aggregation service providers, have 
ample resources and thereby can handle such load. Note that 
end-most VENs, which may be resource constrained, are only 
required to verify a single tag per DR signal. 

Upon receiving the additional information, E can verify 
who has been involved in the distribution path as follows.  

1. Calculate M based on DRt. 

2. Verify P1 by using T’s public key.  

3. Retrieve I1’s public key and use it to verify P2. 

4. Retrieve I2’s public key and use it to verify P3 and 
also check if the designated recipient is E itself. 

After successful verification at step 2, E can be convinced that 
I1 is the recipient intended by T regarding the DR signal 
represented by M. After that, by verifying P2, E can learn that 
P1 and the corresponding data are received by I1, which 
establishes the path {T, I1}. Then, verification at step 4 allows 
E to verify the path {T, I1, I2, E}. If the chain is incomplete 
(i.e., the designated recipient at some hop is different from the 
signer of the next) or if suspicious entities are involved in the 
chain, E has an option to discard the signal. While we 
discussed only verification at E, any intermediary can also 
perform the verification of the path to itself in the same way. 

 

Fig.3: Examples of invalid paths 

Fig. 3 illustrates some examples of invalid DR signal 
distribution paths. In the case of (1), B is designated as the 
recipient by A and is expected to make signature on P1. 
However, C cannot find it and thereby the data can be 
rejected.  In addition, C can notice that the designated 
recipient is not C itself. (2) is a case where B’ intercepts the 
data and tag sent to B. Even if B’ would generate P2 in the 
correct way, the recipient specified in P1 and the signer of the 
next tag are different, resulting in a disconnected chain. In the 
example (3), all tags are generated appropriately. However, if 
C is not aware of or cannot trust X, C can reject the data. 

In addition to the path verification discussed above, E can 
know, through DRt signed by T, the content of the original DR 
signal T issued. Each intermediary may issue a different DR 
signal, which can be denoted as DRI1 or DRI2, for entities in 

its downstream. Such derived signals should have semantic 
consistency with the original one, as mentioned earlier. 
Authenticated DRt also enables E to perform such verification 
to detect an illegitimate or malicious DR signal issued by an 
intermediary. Possible validation criteria in case of OpenADR 
would include: consistency of DR event time and duration, 
market context, event status (e.g., cancelled or not), level of 
requested curtailment, and freshness of the DR event. 

While we so far discussed that metadata M is constructed 
as a cryptographic hash value of the DR signal issued by T 
(i.e., DRt), forwarding the entire signal may cause a privacy 
issue. Namely, T may be directly sending the same DRt to I3 
in addition to I1. In such a situation, DRt that E eventually 
receives may contain I3’s identity even though it is irrelevant 
to E. Also an intermediary, for the sake of its own privacy, 
may want to hide some information only related to itself from 
its customers. To address such cases, it is often desired to 
allow intermediaries to hide part of DRt without losing 
verifiability discussed above. We can employ redactable 
digital signature schemes [3], instead of regular digital 
signature schemes, when creating and verifying P1. For 
example, T can construct a Merkle Hash Tree [4,5] based on 
the content of original DRt and calculate M as the root hash 
value of the tree. Leaf nodes of a Merkle Hash Tree contain 
cryptographic hash values of data items. Each non-leaf node is 
calculated as the hash value of its children nodes, and 
eventually the tree generates a single root hash value that 
represents the entire tree, which is then signed. Under this 
construction, arbitrary data items can be hidden without 
changing the root hash value, by replacing them with 
appropriate hash values. In this way, any intermediary can 
redact arbitrary part of DRt when necessary, generating a 
redacted copy of DRt. It can be later used by any recipient to 
calculate the same M, and thereby E can verify P1 and 
remaining part of the signal distribution path. Therefore, the 
proposed verification scheme still holds.  

B. Implementation in OpenADR2.0 Standards 

Based the design discussed in the previous section, in this 
section we describe a way to enhance security of DR event 
distribution under OpenADR2.0. As mentioned in Section II, 
the only place where additional information can be stored is 
vtnComment. Thus, we take advantage of it to be compliant 
with the standards.  

 

Fig.4: DR signal generation at a top-most VTN 



A top-most VTN first generates a DR signal as defined in 
OpenADR2.0. It may include one or multiple eiEvent 
elements. Then, for each eiEvent, the top-most VTN first 
calculates the Merkle root hash value based on the data items 
contained in the eiEvent. Since XML has a tree structure, it 
can be easily mapped to a Merkle Hash Tree. Note that this 
root hash value corresponds to M in our design and is used 
with the recipient’s identity (Recipient ID in Fig. 4) to create a 
tag (Signature in the figure). Both Recipient ID and Signature 
are stored in vtnComment as Base64-encoded text [7], 
according to the XML schema of OpenADR. In addition, the 
original eiEvent itself, i.e., DRt, also needs to be transferred to 
the downstream entities. We could choose to copy the entire 
eiEvent in the original XML form, but it may cause significant 
overhead in message size. Use of EXI (Efficient XML 
Interchange) [6] can mitigate this problem.  By using EXI, 
XML is compressed into binary data. The resulting binary is 
then encoded into text by using Base64. The resulting text is 
stored under vtnComment. In other words, the compressed 
form of eiEvent content is embedded under its own 
vtnComment along with other metadata. After that, the eiEvent 
is sent to the recipient as part of the oadrDistributeEvent 
payload. These tasks are illustrated in Fig 4. 

Note that the signature embedded here is used for different 
purpose from the regular XML Signature, which can be 
optionally used in OpenADR2.0, and does not necessarily 
replace it. The regular XML Signature is basically for hop-to-
hop message authentication and non-repudiation whereas our 
signature aims at establishing verifiable DR-signal distribution 
path. When XML Signature is used in addition to our 
proposed scheme, it should be created after the contents of 
vtnComment are prepared. 

Handling of DR signals at an intermediary (Intermediary 
1) that receives a signal directly from a top-most VTN and an 
intermediary (Intermediary 2) at a lower tier is illustrated in 
Fig. 5. In the following, this is explained using this figure.  
Since tasks performed by both are almost identical and the 
only major difference is the length of signature chain to be 
verified, we here focus on tasks done by Intermediary 1. Also, 

it is essentially the same even when more intermediaries are 
involved. 

While it is optional and thereby can be skipped, 
Intermediary 1 can first verify the authenticity of the original 
eiEvent by using the top-most VTN's signature embedded in 
vtnComment. To conduct the tag verification, the intermediary 
first needs to calculate the Merkle root hash value in the same 
way as done by the top-most VTN, by using the EXI data. 
Since EXI compression is invertible, the original XML data 
can be recovered from DRt stored in EXI format. Then, the 
pair of the root hash value and IDI1 can be validated against 
P1. At this point, if P1 is not valid or the signer is not a 
trustworthy entity, the intermediary can discard or reject the 
DR signal. In addition, in case the specified recipient ID 
belongs to another party, the DR signal should be considered 
invalid and should not be accepted. 

As the next step, Intermediary 1 generates its own DR 
signal (DRI1) for its VENs based on DRt. After that, it 
embeds, into its own DR signal (more specifically under the 
vtnComment of DRI1), metadata given by the top-most VTN 
including DRt. If Intermediary 1 considers that some portion 
of the top-most VTN's message is privacy sensitive, it can 
redact the corresponding portion [3]. If redaction is made, DRt 
in the left-most box is different from the one in the center box 
in the figure. However, as discussed in Section III-A, Merkle 
root hash values calculated from both versions are the same, 
and thereby the top-most VTN's signature (P1) is still valid.  

After that, Intermediary 1 specifies the ID of its VEN (i.e., 
Intermediary 2), and then makes signature on the pair of this 
recipient ID (IDI2) and P1. Again, they are stored under 
vtnComment of DRI1. The resulting oadrDistributeEvent 
payload conveying DRI1 is the one in the middle of Fig. 5.  

Finally, let us discuss the verification at an end-most VEN. 
As defined in OpenADR2.0, a VEN can verify the integrity of 
the message sent by its immediate VTN. If the VEN is not 
interested in or is incapable of verifying the distribution path 
and the contents of the DR signal issued by the top-most VTN, 
it can just discard the contents of vtnComment.  

 
Fig.5: Handling at Intermediaries 



If the VEN is further interested in verifying the 
information embedded in vtnComment, it should follow the 
similar procedure done by Intermediary 1. As explained in 
Section III-A, the VEN can eventually be convinced of the 
integrity of the original DR signal issued by the top-most 
VTN, which is stored as DRt, as well as the chain of identities 
of intermediaries. After such verification, the VEN can use the 
information to make an informed decision about whether it 
should accept the received DR signal or not. While the 
detailed scheme is outside of our scope, VEN could, for 
example, utilize the criteria mentioned in Section III-A.  

If a potentially malicious intermediary redacted too much 
information for the VEN to make an appropriate decision, the 
VEN always has freedom to reject the DR signal or can sends 
back an error code requesting for more information. When the 
VEN decides to reject the signal for whatever reason, to be 
compliant with the standard, it should return an error and also 
opt out from the corresponding DR event.    

C. Prototype Implementation 

We briefly discuss the prototype implementation in 

OpenADR-based system including a utility company (i.e., a 

top-most VTN), two intermediaries emulating DR 

aggregation service providers, and an end customer (i.e., an 

end-most VEN). All entities and modules that handle 

generation and verification of metadata are implemented in 

Java, and SHA-256 is used as a hash function while 1024-bit 

RSA is used for digital signature. A commodity laptop PC 

equipped with dual-core Intel Core i7 processor and 8GB 

memory is used for the experiments. 

Under this setting, we measured processing time added for 

the proposed scheme to demonstrate the practical aspect. 

Each measurement below is the average of 10 executions. 

Generation of metadata by the utility, including calculation of 

Merkle Hash Tree, signing, and EXI encoding etc., took 

23.4ms for each eiEvent. The processing time at an 

intermediary, including redaction of one XML element, 

update of metadata, was 22.7ms. Distribution path 

verification at the customer, which involves verification of 

three digital signatures, took 15ms. 

Regarding the communication overhead, based on our 

prototype, adding the metadata at a top-most VTN, including 

Base64-encoded EXI data, increases the message size by 50-

60% of the original eiEvent (usually around 2,500-3,000 

Bytes), in case a certificate fingerprint is used to specify a 

designated recipient. Also 350-400 Bytes are added per hop 

(i.e., a digital signature and recipient ID). Containing an 

entire public-key certificate as a recipient identity increases 

the overhead, but it can eliminate the necessity of certificate 

lookup at verifiers. Since our extension can be omitted in 

truly resource-constrained environment, we believe it is still 

in an acceptable range.         

IV. RELATED WORK 

Establishment of chain of identity and digital signatures 
has some similarity to the chain of trust established in typical 
public-key infrastructure. While it provides verifiable trust 
relationship starting from the publicly trusted root CA, it is not 

strictly tied to a specific data item distributed among multiple 
entities and thereby cannot establish data distribution path. 

Our approach is inspired by the scheme designed in [8], 
which discusses a scheme to establish information 
accountability on electronic health record (EHR) sharing in a 
distributed, multi-domain environment. However, in their 
scheme, metadata attached to data carries only one-hop 
information and it has to be accumulated on an online 
repository managed by the data owner. Accumulated metadata 
can be later used to re-construct the sharing data path. On the 
other hand, our scheme does not require such a repository.  

Ordered Multisignature scheme (OMS) [9], could tell a 
verifier the order of signers in a verifiable way. One of the 
limitations of such a scheme is that it is not possible to enforce 
all intermediaries to create their signatures. In other words, 
some (possibly malicious) intermediary may choose not to 
sign and thereby would not be visible to a verifier. On the 
other hand, under our scheme, the chain will be disconnected 
in case such intermediaries exist and thereby should be 
rejected. 

V. CONCLUSIONS 

In this work, we proposed an extension of OpenADR to 
enhance demand response (DR) participants’ capability to 
verify the validity of received DR event information and thus 
to protect themselves, as well as the stability of entire power 
grids, against malicious information emitted by adversaries 
involved in the DR signal distribution path. Our scheme is 
designed strictly under the specification of OpenADR2.0 and 
can be easily integrated into any OpenADR2.0-based systems. 
We believe that such an enhanced security will contribute to 
the broader adoption of standards-based auto DR. 

One of the future directions is to define an optimal data 
schema to embed metadata in the OpenADR payload, 
minimizing communication overhead while balancing the 
trade-off with computational cost. The scheme discussed in 
this paper may also be applicable in other contexts where data 
sharing or distribution among multiple parties is involved, so 
we will explore such possibilities in our future work. 
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