
Enhancing Demand Response Signal Verification in

Automated Demand Response Systems

Daisuke Mashima, Ulrich Herberg, Wei-Peng Chen

Fujitsu Laboratories of America Inc.

Sunnyvale, CA

{dmashima, uherberg, wchen}@us.fujitsu.com

Abstract—Demand response (DR) is a promising technology for

meeting the world’s ever increasing energy demands without a

corresponding increase in energy generation, and for providing

a sustainable alternative for integrating renewables into the

power grid. As a result, interest in automated DR is increasing

globally and has led to the development of OpenADR, an

internationally-recognized standard in the area. In this paper,

we propose security-enhancement mechanisms to provide DR

participants with verifiable information that they can use to

make informed decisions about the validity of DR signals.

Index Terms—Power System Security, Privacy

I. INTRODUCTION

OpenADR2.0 standards [1] are being developed by the
OpenADR Alliance to define a standardized communication
model for automated demand response, including the
messaging scheme used between a demand response (DR)
automation server, for example at a utility, and DR
participants. In recent years, DR automation servers are often
operated by DR aggregation service providers (also called DR
aggregators), which mediate the interactions and transactions
between the utility company and DR participants.

The security scheme implemented in OpenADR largely
relies on well-established standards, such as TLS (Transport
Layer Security) that ensures sender authenticity, message
integrity, and confidentiality and XML Signature for non-
repudiation. While such mechanisms are effective in securing
communication between a certain pair of nodes, they are not
sufficient to attain end-to-end security in communication
involving multiple hops (i.e., sequential pairs of nodes), which
is often the case when DR aggregators are involved.

In this work, we propose a mechanism to enhance security
in multi-hop automated demand response communication that
is compliant with the OpenADR2.0 protocol and schema. The
proposed mechanism can be immediately implemented in any
OpenADR2.0-based systems without affecting compatibilities.
Our scheme allows end DR participants to reliably verify
which entities are involved in the distribution path of DR
event information (also called a DR signal or a DR event

signal) and also the semantic consistency between a DR signal
issued by the originating entity (e.g., utility) and the DR signal
received from an intermediate entity (e.g., a DR aggregator).
OpenADR enhanced with the proposed scheme can better
protect DR participants and the entire power grid from being
manipulated by malicious DR signals that may be inserted into
the multi-hop DR signal distribution path by external attackers
as well as compromised or dishonest intermediaries.

The rest of the paper is organized as follows. In Section II,
an overview of OpenADR2.0 communication model is
provided, followed by a discussion of potential security issues.
The proposed approach and design are described in Section
III. We discuss related work in Section IV and conclude the
paper with future work in Section V.

II. OPENADR2.0 OVERVIEW

In this section, an overview of the OpenADR2.0 standards,
[1], is provided. OpenADR defines services that are subset of
OASIS Energy Interoperation (EI) Version 1.0 [2] for
automated demand response. The OpenADR2.0a profile
defines the feature set for simple devices (e.g., thermostats),
including EiEvent service used for distributing DR signals,
while the latest 2.0b profile is designed for full-feature energy
management solutions including DR aggregation.

Fig.1: Communication Model in OpenADR

In the communication model of OpenADR (and also of
OASIS EI), nodes are organized in a tree-like structure and are
categorized into Virtual Top Nodes (VTNs) or Virtual End

Nodes (VENs). Some entities, such as DR aggregators, may
include both VTN and VEN functionalities. An example of
such architecture is shown in Fig. 1. In this work, the left-most
node in the figure is called a top-most VTN, black nodes in the
same figure are called end-most VENs, and the other nodes
shown in white are called intermediaries.

DR signals are sent via the EiEvent service, and
oadrDistributeEvent payload sent by a VTN conveys the DR
events. Note that all messages used in OpenADR2.0 are
defined by an XML schema and are transferred over HTTP or
XMPP. In an oadrDistributeEvent payload, there can be zero
or multiple DR event signals, each of which is represented as
eiEvent element. eiEvent contains a number of sub elements,
such as identifiers of intended DR event targets (eiTarget).
Among the sub elements, this paper focuses on the element
that is most relevant to the proposed design, namely
eventDescriptor. As the name implies, this element contains
explanatory metadata about the DR event, such as the unique
identifier of the event, event creation timestamp, current status
of the event, and so forth. In addition, there are a couple of
optional elements, including vtnComment element that can
contain arbitrary text data provided by the VTN for the VEN.

Regarding security, OpenADR2.0 defines only minimal
features for hop-to-hop message confidentiality and integrity
[1]. There are two security levels: Standard Security and High
Security, and implementation of Standard Security is
mandated. Standard Security just requires use of TLS, and
client certificates have to be used for mutual authentication.
High Security additionally requires use of XML Signature.
Because of these requirements, we can assume that each node
is equipped with a valid public / private key pair and a digital
certificate issued by a trusted certification authority (CA).

While the confidentiality and message integrity between
two communicating parties, i.e., a VTN and VEN, is assured,
such a hop-to-hop security mechanism may not be sufficient
in cases where there exist one or multiple intermediaries
between a top-most VTN and an end-most VEN. There may
be a number of possible threats, but in this work, we consider
ones caused by compromised or malicious intermediaries.

First, an end-most VEN can only know and verify a
message that is sent by its immediate parent. Although the
VEN can verify the message integrity and sender identity
through TLS, the VEN cannot verify the consistency between
the received message and the message that was originally
issued by the top-most VTN. In a typical demand response
scenario, an intermediary, such as a DR aggregation service
provider, receives a DR event signals from its VTN, processes
the signal based on its own business logic, and eventually
issues another DR signal for each of its VENs. Therefore, in
normal situations, the messages sent to VENs must be
semantically consistent with the original DR signal. However,
without knowing the DR signal issued by the top-most VTN,
there is no way for VENs to detect anomalous messages that
are not consistent with the original DR message.

Secondly, the OpenADR communication model implicitly
assumes that all nodes in the upstream implement sufficient
security protection and appropriately conduct verification of
sender identity as well as message integrity. However, such an

assumption is not often realistic in the setting where multiple
heterogeneous organizations are involved. Lack of rigorous
verification would open the door to attackers who attempt to
insert bogus DR signals into a path between a top-most VTN
and an end-most VEN.

These problems could make VENs vulnerable against
attacks. Namely, when a server working as an intermediary is
compromised by malware and thereby manipulated by an
attacker, it could try to send bogus, malicious DR signals to
nodes in its downstream, potentially causing harm to the end-
customers, or even worse, the stability of the grid. Considering
the tree-like structure of OpenADR communication model,
compromise of nodes closer to the root would cause a broad,
significant damage in the grid. Moreover, if a VEN deployed
in an enterprise, such as a data center, is the target of an
attack, it could pose monetary damage on the company.
Similar issues could occur when a disgruntled insider of the
organization running the intermediary intentionally transmits
malicious DR signals to VENs.

III. ENHANCED VERIFICATION OF OPENADR SIGNALS

A. High-level Design of the Proposed Solution

In this section, we present the approach to address the
security issues discussed in the previous section. The proposed
approach takes advantage of public-key infrastructure, which
is already part of the requirements in OpenADR [1].

Consider the situation where two nodes, called I1 and I2,
mediate the DR signal transmission between a top-most VTN,
T, and an end-most VEN, E. We assume that E knows (and
can trust) at least T's digital certificate. T is usually a utility
company that can be naturally trusted, so this assumption
practically holds. The overview is shown in Fig. 2. [data]entity
represents that data is signed with entity's private key.

Fig.2: Verifiable DR Signal Distribution Path

When T issues a DR event signal, it also generates a tag,
which contains metadata (M) of the DR signal, which
uniquely identifies and is tied to the DR event signal, e.g., a
cryptographic hash value calculated by using the SHA-256
algorithm, and the recipient's identity (I1), which can be a
digital certificate, certificate fingerprint (usually constructed
based on a cryptographic hash value of the certificate), or any
type of unique identifier of the recipient and to be used by the
recipient to retrieve the appropriate public key. The tag is then
signed by T, resulting in P1. P1 is handed to I1 along with T’s
DR event signal corresponding to M, which we call DRt
hereafter, and I1's identity. I1 can then specify the next
recipient, I2, and signs the pair of P1 and I2's identity. The
generated tag, called P2, together with P1, I1’s identity, I2’s
identity, and DRt are sent to I2. Likewise, I2 generates a signed
tag P3 and hands it with P1, P2, I1’s identity, I2’s identity, E’s
identity, and DRt to E.

Although in the figure only one node is depicted at each
tier, it is possible that there are multiple nodes. In such a case,

a tag is generated for each recipient. For instance, if there is
another end-most VEN E', I2 needs to prepare a different tag
whose destination is set to be E'. We assume that utilities and
intermediaries, e.g., DR aggregation service providers, have
ample resources and thereby can handle such load. Note that
end-most VENs, which may be resource constrained, are only
required to verify a single tag per DR signal.

Upon receiving the additional information, E can verify
who has been involved in the distribution path as follows.

1. Calculate M based on DRt.

2. Verify P1 by using T’s public key.

3. Retrieve I1’s public key and use it to verify P2.

4. Retrieve I2’s public key and use it to verify P3 and
also check if the designated recipient is E itself.

After successful verification at step 2, E can be convinced that
I1 is the recipient intended by T regarding the DR signal
represented by M. After that, by verifying P2, E can learn that
P1 and the corresponding data are received by I1, which
establishes the path {T, I1}. Then, verification at step 4 allows
E to verify the path {T, I1, I2, E}. If the chain is incomplete
(i.e., the designated recipient at some hop is different from the
signer of the next) or if suspicious entities are involved in the
chain, E has an option to discard the signal. While we
discussed only verification at E, any intermediary can also
perform the verification of the path to itself in the same way.

Fig.3: Examples of invalid paths

Fig. 3 illustrates some examples of invalid DR signal
distribution paths. In the case of (1), B is designated as the
recipient by A and is expected to make signature on P1.
However, C cannot find it and thereby the data can be
rejected. In addition, C can notice that the designated
recipient is not C itself. (2) is a case where B’ intercepts the
data and tag sent to B. Even if B’ would generate P2 in the
correct way, the recipient specified in P1 and the signer of the
next tag are different, resulting in a disconnected chain. In the
example (3), all tags are generated appropriately. However, if
C is not aware of or cannot trust X, C can reject the data.

In addition to the path verification discussed above, E can
know, through DRt signed by T, the content of the original DR
signal T issued. Each intermediary may issue a different DR
signal, which can be denoted as DRI1 or DRI2, for entities in

its downstream. Such derived signals should have semantic
consistency with the original one, as mentioned earlier.
Authenticated DRt also enables E to perform such verification
to detect an illegitimate or malicious DR signal issued by an
intermediary. Possible validation criteria in case of OpenADR
would include: consistency of DR event time and duration,
market context, event status (e.g., cancelled or not), level of
requested curtailment, and freshness of the DR event.

While we so far discussed that metadata M is constructed
as a cryptographic hash value of the DR signal issued by T
(i.e., DRt), forwarding the entire signal may cause a privacy
issue. Namely, T may be directly sending the same DRt to I3
in addition to I1. In such a situation, DRt that E eventually
receives may contain I3’s identity even though it is irrelevant
to E. Also an intermediary, for the sake of its own privacy,
may want to hide some information only related to itself from
its customers. To address such cases, it is often desired to
allow intermediaries to hide part of DRt without losing
verifiability discussed above. We can employ redactable
digital signature schemes [3], instead of regular digital
signature schemes, when creating and verifying P1. For
example, T can construct a Merkle Hash Tree [4,5] based on
the content of original DRt and calculate M as the root hash
value of the tree. Leaf nodes of a Merkle Hash Tree contain
cryptographic hash values of data items. Each non-leaf node is
calculated as the hash value of its children nodes, and
eventually the tree generates a single root hash value that
represents the entire tree, which is then signed. Under this
construction, arbitrary data items can be hidden without
changing the root hash value, by replacing them with
appropriate hash values. In this way, any intermediary can
redact arbitrary part of DRt when necessary, generating a
redacted copy of DRt. It can be later used by any recipient to
calculate the same M, and thereby E can verify P1 and
remaining part of the signal distribution path. Therefore, the
proposed verification scheme still holds.

B. Implementation in OpenADR2.0 Standards

Based the design discussed in the previous section, in this
section we describe a way to enhance security of DR event
distribution under OpenADR2.0. As mentioned in Section II,
the only place where additional information can be stored is
vtnComment. Thus, we take advantage of it to be compliant
with the standards.

Fig.4: DR signal generation at a top-most VTN

A top-most VTN first generates a DR signal as defined in
OpenADR2.0. It may include one or multiple eiEvent
elements. Then, for each eiEvent, the top-most VTN first
calculates the Merkle root hash value based on the data items
contained in the eiEvent. Since XML has a tree structure, it
can be easily mapped to a Merkle Hash Tree. Note that this
root hash value corresponds to M in our design and is used
with the recipient’s identity (Recipient ID in Fig. 4) to create a
tag (Signature in the figure). Both Recipient ID and Signature
are stored in vtnComment as Base64-encoded text [7],
according to the XML schema of OpenADR. In addition, the
original eiEvent itself, i.e., DRt, also needs to be transferred to
the downstream entities. We could choose to copy the entire
eiEvent in the original XML form, but it may cause significant
overhead in message size. Use of EXI (Efficient XML
Interchange) [6] can mitigate this problem. By using EXI,
XML is compressed into binary data. The resulting binary is
then encoded into text by using Base64. The resulting text is
stored under vtnComment. In other words, the compressed
form of eiEvent content is embedded under its own
vtnComment along with other metadata. After that, the eiEvent
is sent to the recipient as part of the oadrDistributeEvent
payload. These tasks are illustrated in Fig 4.

Note that the signature embedded here is used for different
purpose from the regular XML Signature, which can be
optionally used in OpenADR2.0, and does not necessarily
replace it. The regular XML Signature is basically for hop-to-
hop message authentication and non-repudiation whereas our
signature aims at establishing verifiable DR-signal distribution
path. When XML Signature is used in addition to our
proposed scheme, it should be created after the contents of
vtnComment are prepared.

Handling of DR signals at an intermediary (Intermediary
1) that receives a signal directly from a top-most VTN and an
intermediary (Intermediary 2) at a lower tier is illustrated in
Fig. 5. In the following, this is explained using this figure.
Since tasks performed by both are almost identical and the
only major difference is the length of signature chain to be
verified, we here focus on tasks done by Intermediary 1. Also,

it is essentially the same even when more intermediaries are
involved.

While it is optional and thereby can be skipped,
Intermediary 1 can first verify the authenticity of the original
eiEvent by using the top-most VTN's signature embedded in
vtnComment. To conduct the tag verification, the intermediary
first needs to calculate the Merkle root hash value in the same
way as done by the top-most VTN, by using the EXI data.
Since EXI compression is invertible, the original XML data
can be recovered from DRt stored in EXI format. Then, the
pair of the root hash value and IDI1 can be validated against
P1. At this point, if P1 is not valid or the signer is not a
trustworthy entity, the intermediary can discard or reject the
DR signal. In addition, in case the specified recipient ID
belongs to another party, the DR signal should be considered
invalid and should not be accepted.

As the next step, Intermediary 1 generates its own DR
signal (DRI1) for its VENs based on DRt. After that, it
embeds, into its own DR signal (more specifically under the
vtnComment of DRI1), metadata given by the top-most VTN
including DRt. If Intermediary 1 considers that some portion
of the top-most VTN's message is privacy sensitive, it can
redact the corresponding portion [3]. If redaction is made, DRt
in the left-most box is different from the one in the center box
in the figure. However, as discussed in Section III-A, Merkle
root hash values calculated from both versions are the same,
and thereby the top-most VTN's signature (P1) is still valid.

After that, Intermediary 1 specifies the ID of its VEN (i.e.,
Intermediary 2), and then makes signature on the pair of this
recipient ID (IDI2) and P1. Again, they are stored under
vtnComment of DRI1. The resulting oadrDistributeEvent
payload conveying DRI1 is the one in the middle of Fig. 5.

Finally, let us discuss the verification at an end-most VEN.
As defined in OpenADR2.0, a VEN can verify the integrity of
the message sent by its immediate VTN. If the VEN is not
interested in or is incapable of verifying the distribution path
and the contents of the DR signal issued by the top-most VTN,
it can just discard the contents of vtnComment.

Fig.5: Handling at Intermediaries

If the VEN is further interested in verifying the
information embedded in vtnComment, it should follow the
similar procedure done by Intermediary 1. As explained in
Section III-A, the VEN can eventually be convinced of the
integrity of the original DR signal issued by the top-most
VTN, which is stored as DRt, as well as the chain of identities
of intermediaries. After such verification, the VEN can use the
information to make an informed decision about whether it
should accept the received DR signal or not. While the
detailed scheme is outside of our scope, VEN could, for
example, utilize the criteria mentioned in Section III-A.

If a potentially malicious intermediary redacted too much
information for the VEN to make an appropriate decision, the
VEN always has freedom to reject the DR signal or can sends
back an error code requesting for more information. When the
VEN decides to reject the signal for whatever reason, to be
compliant with the standard, it should return an error and also
opt out from the corresponding DR event.

C. Prototype Implementation

We briefly discuss the prototype implementation in

OpenADR-based system including a utility company (i.e., a

top-most VTN), two intermediaries emulating DR

aggregation service providers, and an end customer (i.e., an

end-most VEN). All entities and modules that handle

generation and verification of metadata are implemented in

Java, and SHA-256 is used as a hash function while 1024-bit

RSA is used for digital signature. A commodity laptop PC

equipped with dual-core Intel Core i7 processor and 8GB

memory is used for the experiments.

Under this setting, we measured processing time added for

the proposed scheme to demonstrate the practical aspect.

Each measurement below is the average of 10 executions.

Generation of metadata by the utility, including calculation of

Merkle Hash Tree, signing, and EXI encoding etc., took

23.4ms for each eiEvent. The processing time at an

intermediary, including redaction of one XML element,

update of metadata, was 22.7ms. Distribution path

verification at the customer, which involves verification of

three digital signatures, took 15ms.

Regarding the communication overhead, based on our

prototype, adding the metadata at a top-most VTN, including

Base64-encoded EXI data, increases the message size by 50-

60% of the original eiEvent (usually around 2,500-3,000

Bytes), in case a certificate fingerprint is used to specify a

designated recipient. Also 350-400 Bytes are added per hop

(i.e., a digital signature and recipient ID). Containing an

entire public-key certificate as a recipient identity increases

the overhead, but it can eliminate the necessity of certificate

lookup at verifiers. Since our extension can be omitted in

truly resource-constrained environment, we believe it is still

in an acceptable range.

IV. RELATED WORK

Establishment of chain of identity and digital signatures
has some similarity to the chain of trust established in typical
public-key infrastructure. While it provides verifiable trust
relationship starting from the publicly trusted root CA, it is not

strictly tied to a specific data item distributed among multiple
entities and thereby cannot establish data distribution path.

Our approach is inspired by the scheme designed in [8],
which discusses a scheme to establish information
accountability on electronic health record (EHR) sharing in a
distributed, multi-domain environment. However, in their
scheme, metadata attached to data carries only one-hop
information and it has to be accumulated on an online
repository managed by the data owner. Accumulated metadata
can be later used to re-construct the sharing data path. On the
other hand, our scheme does not require such a repository.

Ordered Multisignature scheme (OMS) [9], could tell a
verifier the order of signers in a verifiable way. One of the
limitations of such a scheme is that it is not possible to enforce
all intermediaries to create their signatures. In other words,
some (possibly malicious) intermediary may choose not to
sign and thereby would not be visible to a verifier. On the
other hand, under our scheme, the chain will be disconnected
in case such intermediaries exist and thereby should be
rejected.

V. CONCLUSIONS

In this work, we proposed an extension of OpenADR to
enhance demand response (DR) participants’ capability to
verify the validity of received DR event information and thus
to protect themselves, as well as the stability of entire power
grids, against malicious information emitted by adversaries
involved in the DR signal distribution path. Our scheme is
designed strictly under the specification of OpenADR2.0 and
can be easily integrated into any OpenADR2.0-based systems.
We believe that such an enhanced security will contribute to
the broader adoption of standards-based auto DR.

One of the future directions is to define an optimal data
schema to embed metadata in the OpenADR payload,
minimizing communication overhead while balancing the
trade-off with computational cost. The scheme discussed in
this paper may also be applicable in other contexts where data
sharing or distribution among multiple parties is involved, so
we will explore such possibilities in our future work.

REFERENCES

[1] OpenADR Alliance. http://www.openadr.org..

[2] Energy interoperation version 1.0. http://docs.oasis-
open.org/energyinterop/ei/v1.0/energyinterop-v1.0.html, 2012.

[3] R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic

signature schemes. In CT-RSA, pages 244-262, 2002.
[4] R. C. Merkle. Protocols for public key cryptosystems. In IEEE

Symposium on Security and Privacy, pages 122-134, 1980.

[5] R. C. Merkle. A certified digital signature. In CRYPTO, pages 218-
238, 1989.

[6] J. Schneider and T. Kamiya. Efficient Xml Interchange (EXI) format

1.0. http://www.w3.org/TR/exi/, 2011.
[7] S. Josefsson. The Base16, Base32, and Base64 Data Encodings.

http://tools.ietf.org/html/rfc4648, 2006.

[8] D. Mashima and M. Ahamad. Enabling Robust Information
Accountability in E-healthcare Systems . In 3rd USENIX Workshop on

Health Security and Privacy, 2012.

[9] A. Boldyreva, C. Gentry, A. O'Neill, and D. H. Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with

applications to secure routing. In ACM Conference on Computer and

Communications Security, pages 276-285, 2007.

